$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System 원문보기

Journal of microbiology and biotechnology, v.27 no.2, 2017년, pp.297 - 305  

Kong, Mingming (School of Life Science, Beijing Institute of Technology) ,  Zhang, Yang (School of Life Science, Beijing Institute of Technology) ,  Li, Qida (School of Life Science, Beijing Institute of Technology) ,  Dong, Runan (School of Life Science, Beijing Institute of Technology) ,  Gao, Haijun (School of Life Science, Beijing Institute of Technology)

Abstract AI-Helper 아이콘AI-Helper

The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solven...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Any variation in the structure or chemical nature of the enzyme upon hydration could change the constants of the kinetic constants [32]. The effect of phenol concentrations with varying concentrations of n-butanol on nitration efficiency was studied in this work. Both Michaelis-Menten and Lineweaver-Burk plots (Figs.

가설 설정

  • (ii) External mass transfer limitations were ignored. Experiments performed at different stirring speeds showed that 165 rpm was sufficient to avert mechanical damage of HRP and avoid external mass transfer resistances.
  • (iii) The concentration of phenol is much higher than that of the enzyme. This guarantees that the rate-determining step is determined by the enzymatic process.
  • In this paper, we investigated the kinetics of HRP-catalyzed nitration of phenol in an organic-aqueous biphasic system. The kinetic characteristics of HRP-catalyzed nitration largely depend on mass transfer between two phases and the concentrations of organic solvent, enzyme, and substrates.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Shokrolahi A, Zali A, Keshavarz MH. 2007. Wet carbonbased solid acid/ $NaNO_3$ as a mild and efficient reagent for nitration of aromatic compound under solvent free conditions. Chin. Chem. Lett. 18: 1064-1066. 

  2. Bruckdorfer KR. 2001. The nitration of proteins in platelets. C. R. Acad. Sci. III 324: 611-615. 

  3. Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, et al. 2005. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 280: 42464-42475. 

  4. Rocha BS, Gago B, Barbosa RM, Lundberg JO, Radi R, Laranjinha J. 2012. Intragastric nitration by dietary nitrite: implications for modulation of protein and lipid signaling. Free Radic. Biol. Med. 52: 693-698. 

  5. Sheldon RA. 2008. E factors, green chemistry and catalysis: an odyssey. Chem. Commun. (Camb.) 2008: 3352-3365. 

  6. Casella L, Monzani E, Nicolis S. 2010. Potential applications of peroxidases in the fine chemical industries, pp. 111-153. In Torres E, Ayala M (eds.). Biocatalysis Based on Heme Peroxidases: Peroxidases as Potential Industrial Biocatalysts. Springer, Berlin-Heidelberg. 

  7. Setala H, Pajunen A, Rummakko P, Sipila J, Brunow G. 1999. A novel type of spiro compound formed by oxidative cross coupling of methyl sinapate with a syringyl lignin model c ompound. A model system for the beta-1 pathway in lignin biosynthesis. J. Chem. Soc. Perkin Trans. 1: 461-464. 

  8. van Deurzen MPJ, van Rantwijk F, Sheldon RA. 1997. Selective oxidations catalyzed by peroxidases. Tetrahedron 53: 13183-13220. 

  9. Franssen MCR, Vanboven HG, Vanderplas HC. 1987. Enzymatic halogenation of pyrazoles and pyridine derivatives. J. Heterocycl. Chem. 24: 1313-1316. 

  10. Stanbury DM. 1989. Reduction potentials involving inorganic free radicals in aqueous solution. Adv. Inorg. Chem. 33: 69-138. 

  11. Hamid M, Khalil-ur-Rehman. 2009. Potential applications of peroxidases. Food Chem. 115: 1177-1186. 

  12. Flores-Cervantes DX, Maes HM, Schaffer A, Hollender J, Kohler HP. 2014. Slow biotransformation of carbon nanotubes by horseradish peroxidase. Environ. Sci. Technol. 48: 4826-4834. 

  13. Nanayakkara S, Zhao Z, Patti AF, He L, Saito K. 2014. Immobilized horseradish peroxidase (I-HRP) as biocatalyst for oxidative polymerization of 2,6-dimethylphenol. ACS Sustain. Chem. Eng. 2: 1947-1950. 

  14. Budde CL, Beyer A, Munir IZ, Dordick JS, Khmelnitsky YL. 2001. Enzymatic nitration of phenols. J. Mol. Catal. B Enzym. 15: 55-64. 

  15. Dai RJ, Huang H, Chen J, Deng YL, Xiao SY. 2007. Nitration reaction catalyzed by horseradish peroxidase in the presence of $H_2O_2$ and $NaNO_2$ . Chin. J. Chem. 25: 1690-1694. 

  16. Doukyu N, Ogino H. 2010. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48: 270-282. 

  17. Reslow M, Adlercreutz P, Mattiasson B. 1987. Organicsolvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process. Appl. Microbiol. Biotechnol. 26: 1-8. 

  18. Monti D, Ottolina G, Carrea G, Riva S. 2011. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 111: 4111-4140. 

  19. Fernandes P, Cabral J. 2008. Biocatalysis in Biphasic Systems: General, pp. 191-210. Wiley-VCH Verlag, Weinheim. 

  20. Vasic-Racki D, Kragl U, Liese A. 2003. Benefits of enzyme kinetics modelling. Chem. Biochem. Eng. Q. 17: 7-18. 

  21. Vasic-Racki D, Findrik Z, Presecki AV. 2011. Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91: 845-856. 

  22. Anni H, Yonetani T. 1992. Mechanism of action of peroxidases. Met. Ions Biol. Syst. 28: 219-241. 

  23. Raven EL. 2013. Heme peroxidases, pp. 962-965. In Roberts GCK (ed.). Encyclopedia of Biophysics. Springer, Berlin-Heidelberg. 

  24. Kong M, Wang K, Dong R, Gao H. 2015. Enzyme catalytic nitration of aromatic compounds. Enzyme Microb. Technol. 73-74: 34-43. 

  25. Pezzella A, Manini P, Di Donato P, Boni R, Napolitano A, Palumbo A, d'Ischia M. 2004. $17{\beta}$ -Estradiol nitration by peroxidase/ $H_2O_2/NO_2^^-$ : a chemical assessment. Bioorg. Med. Chem. 12: 2927-2936. 

  26. Monzani E, Roncone R, Galliano M, Koppenol WH, Casella L. 2004. Mechanistic insight into the peroxidase catalyzed nitration of tyrosine d erivatives by nitrite and hydrogen peroxide. Eur. J. Biochem. 271: 895-906. 

  27. Chew YH, Chua LS, Cheng KK, Sarmidi MR, Aziz RA, Lee CT. 2008. Kinetic study on the hydrolysis of palm olein using immobilized lipase. Biochem. Eng. J. 39: 516-520. 

  28. Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP. 2001. Stability of free and immobilised peroxidase in aqueous-organic solvents mixtures. J. Mol. Catal. B Enzym. 15: 147-153. 

  29. Khmelnitsky YL, Levashov AV, Klyachko NL, Martinek K. 1988. Engineering biocatalytic systems in organic media with low water content. Enzyme Microb. Technol. 10: 710-724. 

  30. Ryu K, Dordick JS. 1992. How do organic-solvents affect peroxidase structure and function? Biochemistry 31: 2588-2598. 

  31. Lee SB, Kim KJ. 1995. Effect of water activity on enzyme hydration and enzyme reaction-rate in organic-solvents. J. Ferment. Bioeng. 79: 473-478. 

  32. Singh P, Prakash R, Shah K. 2012. Effect of organic solvents on peroxidases from rice and horseradish: prospects for enzyme based applications. Talanta 97: 204-210. 

  33. Veitch NC. 2004. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65: 249-259. 

  34. Nicell JA, Wright H. 1997. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme Microb. Technol. 21: 302-310. 

  35. Hernandez K, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. 2012. Hydrogen peroxide in biocatalysis. A dangerous liaison. Curr. Org. Chem. 16: 2652-2672. 

  36. Puiu M, Constantinovici M, Babaligea I, Raducan A, Olmazu C, Oancea D. 2010. Detecting operational inactivation of horseradish peroxidase using an isoconversional method. Chem. Eng. Technol. 33: 414-420. 

  37. Valderrama B, Ayala M, Vazquez-Duhalt R. 2002. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem. Biol. 9: 555-565. 

  38. Lopes GR, Pinto D, Silva AMS. 2014. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv. 4: 37244-37265. 

  39. Ryan BJ, O'Fagain C. 2007. Effects of single mutations on the stability of horseradish peroxidase to hydrogen peroxide. Biochimie 89: 1029-1032. 

  40. Asad S, Dabirmanesh B, Khajeh K. 2014. Phenol removal from refinery wastewater by mutant recombinant horseradish peroxidase. Biotechnol. Appl. Biochem. 61: 226-229. 

  41. Hassani L, Nourozi R. 2014. Modification of lysine residues of horseradish peroxidase and its effect on stability and structure of the enzyme. Appl. Biochem. Biotechnol. 172: 3558-3569. 

  42. Gil-Rodriguez P, Ferreira-Batista C, Vazquez-Duhalt R, Valderrama B. 2008. A novel heme peroxidase from Raphanus sativus intrinsically resistant to hydrogen peroxide. Eng. Life Sci. 8: 286-296. 

  43. Colonna S, Gaggero N, Richelmi C, Pasta P. 1999. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17: 163-168. 

  44. van de Velde F, van Rantwijk F, Sheldon RA. 2001. Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol. 19: 73-80. 

  45. van der Vliet A, Eiserich JP, Halliwell B, Cross CE. 1997. Formation of reactive nitrogen species during peroxidasecatalyzed oxidation of nitrite - a potential additional, mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272: 7617-7625. 

  46. Burner U, Furtmuller PG, Kettle AJ, Koppenol WH, Obinger C. 2000. Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 275: 20597-20601. 

  47. Lehnig M. 2001. 15N chemically induced dynamic nuclear polarization during reaction of N-acetyl-L-tyrosine with the nitrating systems nitrite/hydrogen peroxide/horseradish peroxidase and nitrite/hypochloric acid. Arch. Biochem. Biophys. 393: 245-254. 

  48. Roncone R, Barbieri M, Monzani E, Casella L. 2006. Reactive nitrogen species generated by heme proteins: mechanism of formation and targets. Coord. Chem. Rev. 250: 1286-1293. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로