$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향
Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag 원문보기

Korean chemical engineering research = 화학공학, v.55 no.2, 2017년, pp.141 - 155  

손민아 (포항산업과학연구원 기후에너지연구그룹) ,  김국희 (포항산업과학연구원 기후에너지연구그룹) ,  한건우 (포항산업과학연구원 기후에너지연구그룹) ,  이민우 (계명대학교 화학공학과) ,  임준택 (포스코 신사업실)

초록
AI-Helper 아이콘AI-Helper

이논문에서는 $CO_2$ 활용기술관점에서광물탄산화기술의하나인제철슬래그를이용한침강성탄산칼슘(Precipitated Calcium Carbonate, PCC) 제조 기술의 개발 현황을 고찰하였다. 광물 탄산화 기술의 원리, 특징, 전세계적 개발 현향을 살펴보았고, PCC 제조기술 및 시장동향도 파악하였다. 광물 탄산화는 안정적이고 친환경적인 기술로, 산업 부산물의 경제적 처리를 가능하게 한다. 일반적으로 슬래그중 Ca 용출 및 고액 분리 과정후 상등액과 $CO_2$의 반응을 통해 탄산칼슘을 제조한다. 이 기술은 파일럿 단계까지 기술개발이 진행되었으며(알토대학교의 Slag2PCC), 상용화를 위해서는 경제성 증대가 필요할 것으로 판단된다. 개발을 위한 핵심 기술로는 슬래그로부터 Ca의 효과적 용출 및 불순물 제거, 탄산칼슘의 입도 및 입형 제어를 통한 고부가가치화, 잔사 슬래그의 활용방안 발굴, 연속공정 구현을 위한 반응 조건최적화 등을 들 수 있다.

Abstract AI-Helper 아이콘AI-Helper

In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of $CO_2$ utilization. Principle, feature, and global and domestic development statu...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
국내의 CO2 시장은 어떤 상황인가? 즉, 포집된 CO2의 처리를 통한 경제성 확보가 쉽지 않은 상황이라고 할 수 있다. 국내의 경우 CO2 시장의 대부분을 차지하는조선업계(용접용), 음료용 등 액화탄산 시장은 약 100만 톤/년 이내, 액체탄산 공급가격은 약 15만원/톤이며, 시장은 거의 포화된 상태로 알려져 있다[1]. 따라서, 대량 CO2 배출원인 발전소나 제철소 등에만 국한시켜 CO2 포집 및 판매 사업을 추진한다 하더라도 포집된 CO2(보통 수만 톤/년)의 상업적인 시장은 상당히 제한적이라고 볼 수 있다.
이산화탄소 광물화 기술의 제한점은? CCUS 기술 중 다양한 광물 자원을 CO2와 직접 또는 간접적으로반응시켜 탄산염의 형태로 전환시키는 기술인 광물 탄산화(mineralcarbonation, 혹은 광물화(mineralization)) 는 CO2를 안전하게 격리 /저장 할 수 있는 기술이다. 하지만, 처리 용량이 현재 중소규모이며,원료물질의 파쇄 등 에너지 집약적인 전처리 과정, 전체적으로 느린반응 속도, 광물 자원과 CO2 배출원의 위치적 문제, 탄산염을 수용할 수 있는 대규모의 수송·저장 시설 부족 등의 문제로 그 효과가제한되고 있다[4]. 이러한 문제점에도 불구하고 광물 탄산화는 저장 가능량과 안정성 면에서 매우 뛰어난 방법임이 보고되었고, 상용화되었을 경우 Table 1에서 볼 수 있듯이 대량의 CO2 처리가 가능하며, 영구적인 CO2 저감기술이 될 수 있어 전도가 유망한 기술이다[5,6].
이산화탄소 감축이 어려운 이유는? 대표적인 온실가스인 이산화탄소(carbon dioxide, CO2) 감축 문제는 전 세계적인 이슈로 부상하고 있으나, CO2 포집·저장 기술(CCS, Carbon Capture & Storage)과 같이 실질적인 온실가스 감축 기술들은 경제성 측면에서 아직 상용화가 어렵다는 것이 일반적인 견해이다. 즉, 포집된 CO2의 처리를 통한 경제성 확보가 쉽지 않은 상황이라고 할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (76)

  1. http://www.amenews.kr/atc/n.view.asp?ik10058. 

  2. Lee, Y.-J., "Submission Trend of Intended Nationally Determined Contitubiton (INDC) and Its Total Effect," Climate Change and Green Growth, 10, 15-24(2015). 

  3. Lee, J. H., Lee, D. W., Jang, S. G., Kwak, N. S., Lee, I. Y., Jang, K. R., Choi, J. S. and Shim, J. G., "Estimating $CO_2$ Emission Reduction of Non-Capture $CO_2$ Utilization (NCCU) Technology," Korean Chem. Eng. Res., 53(5), 590-596(2015). 

  4. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. and Maroto-Valer, M., "A Review of Mineral Carbonation Technologies to Sequester $CO_2$ ," Chem. Soc. Rev., 43, 8049-8080(2014). 

  5. Lackner, K. S., "A Guide to $CO_2$ Sequestration," Science, 300 (2003). 

  6. Inagendo, Carbon Capture Use & Storage(CCUS)(2013), http://www.inagendo.com/res/default/inagendo_ccus.pdf. 

  7. DNV (Det Norske Veritas), Carbon Dioxide Utilization: Electrochemical Conversion of $CO_2$ -Opportunities and Challenges, Position Paper 07-2011(2011). 

  8. Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A. and Beckman, E. J., "Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities," Chem. Rev., 101, 953-996(2001). 

  9. KIMS (Korea Institute of Materials Science), "Chemical Conversion Technology of Carbon Dioixde," MateriALL, 2013, 483-506(2013). 

  10. Kim, K. H., "Carbon Dioxide Capture, Storage and Utilization Technology," KISTI Market Report, 2(12), (2012). 

  11. Gronund & Precipitated Calcium Carbonate: Global Industry Markets & Outlook 2012, http://vmpc.com.vn. 

  12. Quadrelli, E. A., Centi, G., Duplan, J. L. and Perathoner, S., "Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential," ChemSusChem., 4, 1194-1215(2011). 

  13. http://www.businesswire.com/news/home/20160128005866/en/Global-Polyolefins-PO-Market-Drivers-Challenges-Trends. 

  14. http://www.prnewswire.com/news-releases/global-acetic-acid-market---segmented-by-application-and-geography---trends-and-forecasts-2015-2020---reportlinker-review-300145381.html. 

  15. Kim, H. S., Chae, S.-C., Ahn, J. W. and Jang, Y.-N., " $CO_2$ Fixation Technology by Mineral Carbonation," Mineral Science and Industry, 22(1), 71-85(2009). 

  16. Kim, K. H., "Carbon Dioxide Storage by Mineral Carbonation," KISTI Market Report, 4(1), (2014). 

  17. Abass A. Olajire, "A Review of Mineral Carbonation Technology in Sequestration of $CO_2$ ," J. Petrol. Sci. Eng., 109, 364-392 (2013). 

  18. Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage, IPCC Special Report, Cambridge University Press(2005). 

  19. Han, K., Rhee, C. H. and Chun, H. D., "Feasibility of Mineral Carbonation Technology as a $CO_2$ Storage Measure Considering Domestic Industrial Environment," Korean Chem. Eng. Res., 49(2), 137-150(2011). 

  20. Perry, R. H., Green, D., Perry's Chemical Engineers' handbook, 6th Ed., McGraw-Hill(1984). 

  21. GCCSI, Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide(2011). 

  22. Lee, J. H., Lee, D. W. and Shim, J. G., "Development Status of $CO_2$ Utilization Technology," KIC News, 18(3), 28-40(2015). 

  23. http://skyonic.com/technologies/skymine. 

  24. http://www.calera.com. 

  25. http://www.twence.com. 

  26. http://www.solvay.com. 

  27. Mattila, H.-P., "Utilization of Steelmaking Waste Materials for Production of Calcium Carbonate( $CaCO_3$ )," Department of Chemical Engineering, Doctor of Technology Thesis, Abo Akademi University, Turku(2014). 

  28. Lee, J. H., Lee, D. W., Jang, S. G., Kwak, N. S., Lee, I. Y. and Jang, K. R, "Economic Evaluations for the Carbon Dioxide-Involoved Production of High-Value Chemicals," Korean Chem. Eng. Res., 52(3), 347-354(2014). 

  29. Kim, D. W., "Trend and Prospect of High-value-added Mineralization Technology Using $CO_2$ ," Monthly Electrical Journal, 461, 26-29(2015). 

  30. http://www.dwconst.re.kr/skill/skill02_6.asp. 

  31. http://www/kcrc.re.kr. 

  32. Park, H. S., "Formation Behavior of Precipitated Calcium Carbonate Polymorphs Follwing Nucleation Rate," Department of Resource Engineering, M.S. Thesis, Inha University, Incheon(2005). 

  33. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Effect of Flow Rate and $CO_2$ Content on the Phase and Morphology of $CaCO_3$ Prepared by Bubbling Method," J. Cryst. Growth, 276, 514-548(2005). 

  34. IHS Markit, Chemical Economics Handbook: Calcium Carbonate, Find-Ground and Precipitated(2014), https://www.ihs.com/products/fine-ground-and-precipitated-chemical-economics-handbook.html. 

  35. Roskill Information Services, "Ground & Precipitated Calcium Carbonate: Global Industry Markets & Outlook," 1st Ed., (2012). 

  36. Stratton P., "An Overview of the North American Calcium Carbonate Market," Oct. 2012, https://roskill.com/wp/wp-content/uploads/2014/11/download-roskills-paper-on-the-north-americancalcium-carbonate-market.attachment1.pdf. 

  37. Mattila, H. P., Hudd, H. and Zevenhoven, R., "Cradle-to-Gate Life Cycle Assessment of Precipitated Calcium Carbonate Production from Steel Converter Slag," J. Clean. Prod., 84, 611-618 (2014). 

  38. Kirboga, S. and Oner, M., "Effect of the Experimental Parameters on Calcium Carbonate Precipitation," Chem. Eng. Trans., 32, 2119-2124(2013). 

  39. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Factors Affecting the Phase and Morphology of $CaCO_3$ Prepared by a Bubbling Method," J. Eur. Ceram. Soc., 26, 843-847(2006). 

  40. Hadiko, G., Han, Y. S., Fuji, M. and Takahashi, M., "Synthesis of Hollow Calcium Carbonate Particles by the Bubble Templating Method," Mater. Letter., 59, 2519-2522(2005). 

  41. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Crystallization and Transformation of Vaterite at Controlled pH," J. Cryst. Growth, 289, 269-274(2006). 

  42. Matsushita, I., Hamada, Y., Moriga, T., Ashida, T. and Nakabayashi, I., "Synthesis of Vaterite by Carbonation Process in Aqueous System," J. Ceram. Soc. Jpn., 104(11), 1081-1084(1996). 

  43. Domingo, C., Garcia-Carmona, J., Loste, E., Fanovich, A., Fraile, J. and Gomez-Morales, J., "Control of Calcium Carbonate Morphology by Precipitation in Compressed and Supercritical Carbon Dioxide Media," J. Cryst. Growth, 271(1-2), 268-273(2004). 

  44. Lee, T. J., Seo, J. H. and Kim, H. J., "Morphological Analysis of Engineered PCC by Gas-Liquid Mixing Conditions," TAPPI. J., 43(3), (2011). 

  45. Bang, J. H., Jang, Y. N., Kim, W., Song, K. S., Jeon, C. W., Chae, C. S. Lee, S. W., Park, S. J. and Lee, M. G., "Precipitation of Calicium Carbonate by Carbon Dioxide Microbubbles," Chem. Eng. J., 174, 413-320(2011). 

  46. Bang, J. H., Jang, Y. N., Kim, W., Song, K. S., Jeon, C. W., Chae, C. S. Lee, S. W., Park, S. J. and Lee, M. G., "Specific Surface Area and Particle Size of Calcium Carbonate Precipitated by Carbon Dioxide Microbubbles," Chem. Eng. J., 198-199, 254-260(2012). 

  47. Cho, B. S., Lee, H. H. and Kim, G. Y., "Status and Prospects of Recycling Blast Furnace Slag," Megazine of RCR, 7(3), 9-12(2012), in Korean. 

  48. Choi, J. S., "The Status and Utilization Prospect of Steel Making Slag," Architecture, 56(08), 18-22(2012). 

  49. Jeon, J. G., Jin, S. J. and Kim, D. H., "Present Status and Recycling Technology for Slag in Korea," Megazine of RCR, 8(1), 8-10(2013). 

  50. Rawlins, C. H., "Geological Sequestration of Carbon Dioxide by Hydrous Carbonate Formation in Steelmaking Slag," Department of Metallurgical Engineering, Ph.D. Dissertation, Missouri University of Science and Technology, Rolla(2008). 

  51. Kim, D. and Kim, M.-J., "Mineral Carbonation Using Industrial Waste," J. Korea Soc. Waste Mgmt., 32(4), 317-328(2015). 

  52. Chiang, Y. W., Santos, R. M., Elsen, J., Meesschaert, B., Martens, J. A. and Van Gerven, T., "Towards Zero-Waste Mineral Carbon Sequestration via Two-Way Valorization of Ironmaking Slag," Chem. Eng. J., 249, 260-269(2014). 

  53. Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J. and Zevenhoven, R., "Fixation of $CO_2$ by Carbonating Calcium Derived from Blast Furnce Slag," Energy, 33(9), 1461-1467(2008). 

  54. Said, A., Mattila, H. P., Jarvinen, M. and Zevenhoven, R., "Production of Precipitated Calcium Carbonate (PCC) from Steelmaking Slag for Fixation of $CO_2$ ," Appl. Energy, 112, 765-771 (2013). 

  55. Kunzler, C., Alves, N., Pereira, E., Nienczewski, J., Ligabue, R., Einloft, S. and Dullius, J., " $CO_2$ Storage with Indirect Carbonation Using Industrial Waste," Energy Procedia, 4, 1010-1017(2011). 

  56. Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K. and Yamada, K., "Development of a New pH-Swing $CO_2$ Mineralization Process with a Recyclable Reaction Solution," Energy, 33, 778-784 (2008). 

  57. Sun, Y., Yao, M. S., Zhang, J. P. and Yang, G., "Indirect $CO_2$ Mineral Sequestration by Steelmaking Slag with $NH_4Cl$ as Leaching Solution," Chem. Eng. J., 173, 437-445(2011). 

  58. Mun, M. W. and Cho, M. H., "Mineral Carbonation for Carbon Sequestration with Industrial Waste," Energy Procedia, 37, 6999-7005(2013). 

  59. Kwack, J.-S., "Study on the $CO_2$ Gas Fixation Using the Construction Byproducts through the Chemical Pre-treatment and Wet Mineral Carbonation," Department of Architecture Engineering, M.S. Thesis, Hanyang University, Ansan(2013). 

  60. Song, H. Y., Seo, J. B., Kang, S. K., Ki,, I. D., Choi, B. W. and Oh, K. J., " $CO_2$ Fixation by Magnesium Hydroxide from Ferro-Nickel Slag," Clean Tech., 20(1), 42-50(2014). 

  61. Baek, S. H., Park, J. H., Heo, D. M., K. R. Patent 1009585930000 (2010). 

  62. Mattila, H. P., Grigaliunaite, I. and Zevenhoben, R., "Chemical Kinetics Modelling and Pocess Parameter Sensitivity for Precipitated Calcium Carbonate Production from Steelmaking Slags," Chem. Eng. J., 192, 77-89(2012). 

  63. Said, A., Laukkanen, T. and Jarvinen, M., "Pilot-scale Experimental Work on Carbon Dioxide Sequestration Using Steelmaking Slag," Appl. Energy, 177, 602-6111(2016). 

  64. Chung, S. Y., Lee, K. C., Cho, M. H., Sohn, S. G., Park, D. C., K. R. Patent 1012512640000(2013). 

  65. Santos, R. M., Francois, D., Mertens, G., Elsen, J. and Van Gerven, T., "Ultrasound-Intensified Mineral Carbonation," Appl. Therm. Eng., 57(1), 154-163(2013). 

  66. Huijgen, W. J. J., Comans, R. N. J. and Witkamp, G. J., "Cost Evaluation of $CO_2$ Sequestration by Aqueous Mineral Carbonation," Energy Convers. Mgmt., 48, 1923-1935(2007). 

  67. Eloneva, S., "Reduction of $CO_2$ Emissions by Mineral Carbonation: Steelmaking Slags as a Raw Material with a Pure Calcium Carbonate End Product," Ph.D. Dissertation, Department of Energy Technology, Aalto University, Espoo(2010). 

  68. Eloneva, S., Said, A., Fogelholm, C.-J. and Zevenhoven, R., "Preliminary Assessment of a Method Utilizing Carbon Dioxide and Steelmaking Slags to Produce Precipitated Calcium Carbonate," Appl. Energy, 90, 329-334(2012). 

  69. Lee, S., Kim, J.-W., Chae, S., Bang, J.-H. and Lee, S.-W., " $CO_2$ Sequestration Technology through Mineral Carbonation: An Extraction and Carbonation of Blast Slag," J. $CO_2$ Util., 16, 336- 345(2016). 

  70. Giannoulakis, S., Volkart, K. and Bauer, C., "Life Cycle and Cost Assessment of Mineral Carbonation for Carbon Capture and Storage in European Power Generation," Int. J. Greenhouse Gas Control, 21, 140-157(2014). 

  71. Teir, S., Kotiranta, T., Pakarinen, J. and Mattila, H.-P. "Case Study for Production of Calcium Carbonate from Carbon Dioxide in Flue Gases and Steelmaking Slag," J. $CO_2$ Util., 14, 37-46(2016). 

  72. Lekakh, S. N., Rawlins, C. H., Robertson, D. G. C., Richards, V. L. and Peaslee, K. D., "Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag," Metall. Mater. Trans. B, 39B, 125-134(2008). 

  73. Park, S., Na, J., Kim, M., An, J., Lee, C. and Han, C., " $CO_2$ Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution," Korean Chem. Eng. Res., 54(5), 612-620(2016). 

  74. Kim, S., Ko, J. W. and Park, C. B., "Bio-Isprired Mineralization of $CO_2$ Gas to Hollow $CaCO_3$ Microspheres and Bone Hydroxyapatite/ Polymer Composites," J. Mater. Chem., 21, 11070-11073 (2011). 

  75. Karakas, F., Hassas, B. V. and Celik, M. S., "Effect of Precipitated Calcium Carbonate Additions on Waterborne Paints at Different Pigment Volume Concentrations," Prog. Org. Coat., 83, 64-70(2015). 

  76. https://en.wikipedia.org/wiki/Standard_enthalpy_of_formation. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로