$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

This research analyzed the ventilation effect of the multi-span greenhouse based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. To compare and analyze the ventilation effects with different types of greenhouse, the uniform environmental conditions shou...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The purpose of this study was to compare and analyze the efficiencies of naturally-ventilated multi-span greenhouses in Korea based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. In addition, the ventilation efficiencies were analyzed based on the calculation method.
  • This research analyzed the ventilation effect of the multi-span greenhouse. The average error between ventilation rate of TGD and the one of mass flow was 10.
  • This study simulated the ventilation effects based on the wind in the wide-span type greenhouse using CFD. The ventilation was calculated using Tracer gas decay to compare based on the height and location inside the greenhouse[10][17][18].
본문요약 정보가 도움이 되었나요?

참고문헌 (18)

  1. Bartzanas, T., T. Boulard, C. Kittas, Effect of vent arrangement on windward ventilation of a tunnel greenhouse, Biosystems Engineering, 88(4), pp. 479-490, (2004). 

  2. Boulard, T., G. Papadakis, C. Kittas, M. Mermier, Air flow and associated sensible heat exchanges in a naturally ventilated greenhouse, Agricultural and Forest Meteorology, 88, pp. 111-119, (1997). 

  3. Boulard, T. and B. Draoui, Natural ventilation of a greenhouse with continuous roof vents: measurements and data analysis. J. Agricultural Engineering Research 61, pp. 27-36, (1995). 

  4. Boulard, T., C. Kittas, J. C. Roy, S. Wang, Convective and ventilation transfers in greenhouses, Part 2: Determination of the distributed greenhouse climate, Biosystems Engineering. 83(2), pp. 129-147, (2002). 

  5. Bruce, J.M.. Natural ventilation Its role and application in the bioclimatatic system. Farm Building R&D Studies February 1977, 1-8, (1977). 

  6. Brugger, M., J. Montero, E. Baeza, J. Perez-Parra. Computational fluid dynamic modeling to improve the design of the spanish parral style greenhouse. The American Society of Agricultural Engineers. pp. 34-46, (2003). 

  7. De Jong, Taeke, Natural ventilation of large multi-span greenhouses, Ph.D Dissertation, Wageningen, Netherlands, (1990). 

  8. Fatnassi, H., T. Boulard, H. Demrati, L. Bouirden, G. Sappe, Ventilation performance of a large canarian-type greenhouse equipped with insect-proof nets, Biosystem Engineering, 82(1), pp. 97-105, (2002). 

  9. Fernandez, J. E. and B. J. Bailey, Measurement and prediction of greenhouse ventilation rates, Agricultural and Forest Meteorology. 58, pp. 229-245, (1992). 

  10. Hoxey, R. P. and P. J., Richards. Structures of the atmospheric boundary layer below 25m and implications to wind loading on low-rise buildings, Journal of wind engineering and industrial aerodynamics, 44, pp. 317-327, (1992). 

  11. Kacira, M., S. Sase, L. Okushima, Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation, Transactions of the American Society of Agricultural Engineers, 47(6), pp. 2059-2067, (2004). 

  12. Kacira, M., T. H. Short, R. R. Stowell, A cfd evaluation of naturally ventilated, multi-span, sawtooth greenhouses, Transactions of the American Society of Agricultural Engineers, 41(3), pp. 833-836, (1998). 

  13. Kacira, M., T. H. Short, R. R. Stowell, A fluid dynamic evaluation of naturally ventilated gutter-connected greenhouses, The American Society of Agricultural Engineers, 974059, (1997). 

  14. Kacira. M., S. Sase, L. Okushima, Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-indeced ventilation, Transactions of the American Society of Agricultural Engineeris, 47(6), pp. 2059-2067, (2004). 

  15. Kozai, T. S. Sase and M. Nara, A modeling approach to greenhouse environmental control by ventilation. Acta Hort, vol 106, pp. 125-136, (1980). 

  16. Naas, I. A., D. J. Moura, R. A. Bucklin, F. B. Fialho, An Algorithm for determining opening effectiveness in natural ventilation by wind. Transactions of the American Society of Agricultural Engineers, 41(3), pp. 767-771, (1998). 

  17. Richardson, G. M. and P. A. Blackmore, The Silsoe structures building: comparison of 1:100 model-scale data with full-scale data, Journal of wind engineering and industry aerodynamics, vol 57, pp. 191-201, (1995). 

  18. Timmon, M.B., How does natural ventilation work and why? American Society of Agricultural Engineers, Paper No. 90-4551, ASAE. St. Joseph. MI 49085, (1990). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로