$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

사육수의 pH변화가 숭어(Mugil cephalus)에 미치는 생리적 영향
Physiological Responses of Gray Mullet Mugil cephalus to Low-pH Water 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.50 no.2, 2017년, pp.153 - 159  

문혜나 (제주대학교 해양생명과학과) ,  박진희 (한화 호텔&리조트) ,  박천만 (제주대학교 해양생명과학과) ,  남궁진 (제주대학교 해양생명과학과) ,  김기혁 (제주대학교 해양생명과학과) ,  여인규 (제주대학교 해양생명과학과)

Abstract AI-Helper 아이콘AI-Helper

We examined changes in the physiological responses of gray mullet Mugil cephalus exposed to acidic seawater (pH 6.0, 6.5, 7.0) and normal seawater (pH 8.0, control) for 15 days. As pH decreased, survival rate and body weight also decreased. Levels of aminotransferase, total protein and triglycerides...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 또한 숭어는 전세계적으로 분포하는 종으로 환경 변화에 대한 지표 실험 동물로 매우 적합한 어종으로 판단되고 있다. 본 연구는 해수의 산성화가 숭어의 생리상태에 미치는 영향을 조사하기 위하여, 해양표층수의 평균 pH 8.1을 기준으로 설정한 대조군(pH 8.0)과 실험군(pH 6.0, 6.5, 7.0)에서 각각 15일간 숭어를 사육한 후 생존율, 혈액생화학적 성상 및 항산화 효소 활성 변화를 조사하였다
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
화석연료의 연소에 의해 방출된 CO2로 인하여 초래하는 결과는? , 2007). 특히 화석연료의 연소에 의해 방출된 대기중의 CO2는 해양으로 흡수되어 탄산염(carbonate) 및 중탄산염(bicarbonate)을 생성하게 되고, 해양의 수소이온농도(pH)의 감소를 유도하여 해양 산성화(ocean acidification)를 초래한다(Gattuso and Buddemeier, 2000).
수중의 pH의 변화로 해양 산성화가 어류에게 미치는 영향은? , 2004). 현재까지 해양 산성화가 상어(Mustelus canis), 연어(Oncorhynchus gorbuscha) 및 큰 가시고기(Gasterosteus aculeatus)와 같은 어종에서 성장 저하, 감각기능 손상 및 신경 전달물질 기능의 변화로 인한 행동 변화 등 다양한 장애를 유발하고, 물질수송과정에 영향을 미쳐 어류의 호흡 및 산소수송기능의 저하를 가져오는 것으로 보고되고 있다(Pörtner et al., 2004; Dixson et al.
자연상태 해수의 pH 농도 범위는? 일반적으로 자연상태 해수(약 35 psu)의 pH는 7.8-8.2의 범위로 일정하게 유지되며, pH가 그 이하로 내려가는 것은 극히 드물었지만, 앞서 언급 하였듯이 CO2의 방출량 증가로 인한 기후의 변화로 인해 해양의 pH가 산성화됨에 따라 해양생태계에 큰 문제를 야기할 것으로 여겨지고 있다(Knutzen, 1981). 이에 해양 산성화는 전 세계적인 문제로서 대두되고 있으며, 2000년대 초반부터 해양 산성화가 해양 생물에 미치는 영향에 관한 연구가 급격히 증가하고 있다(Gattuso and Hansson, 2011).
질의응답 정보가 도움이 되었나요?

참고문헌 (37)

  1. ArasHisar S, Hisar O, Yanik T and Aras SM. 2004. Inhibitory effects of ammonia and urea on gill carbonic anhydrase enzyme activity of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Pharmacol 17, 125-128. 

  2. Arrigo KR. 2007. Carbon cycle: Marine manipulations. Nature Reports Climate Change, 100-101. http://dx.doi.org/10.1038/450491a. 

  3. Aksnes A and Njaa LR. 1981. Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp Biochem Physiol B 69, 893-896. http://dx.doi.org/10.1016/0305-0491(81)90402-8. 

  4. Bonga SW. 1997. The stress response in fish. Physiol Rev 77, 591-625. 

  5. Calabrese A and Davis HC. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biological Bull 131, 427-436. http://dx.doi.org/10.2307/1539982. 

  6. Chen CY, Wooster GA and Bowser PR. 2004. Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate. Aquaculture 239, 421-443. http://dx.doi.org/10.1016/j.aquaculture.2004.05.033. 

  7. Dalton DA, Langeberg L and Treneman NC. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87, 365-370. http://dx.doi.org/10.1111/j.1399-3054.1993.tb01743.x. 

  8. Dixson DL, Jennings AR, Atema J and Munday PL. 2015. Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Chang Biol 21, 1454-1462. http://dx.doi.org/10.1111/gcb.12678. 

  9. Doney SC, Fabry VJ, Feely RA and Kleypas JA. 2009. Ocean acidification: the other $CO_2$ problem. Ann Rev Mar Sci 1, 169-192. http://dx.doi.org/10.1146/annurev.marine.010908.163834. 

  10. Forman HJ and Fridovich I. 1973. On the stability of bovine superoxide dismutase the effects of metals. J Biol Chem 248, 2645-2649. 

  11. Gabryelak T, Piatkowska M, Leyko W and Peres G. 1983. Seasonal variations in the activities of peroxide metabolism enzymes in erythrocytes of freshwater fish species. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 75, 383-385. http://dx.doi.org/10.1016/0742-8413(83)90210-4. 

  12. Gattuso JP and Buddemeier RW. 2000. Ocean biogeochemistry: calcification and $CO_2$ . Nature 407, 311-313. http://dx.doi.org/10.1038/35030280. 

  13. Gattuso JP and Hansson L. 2011. Ocean acidification. Oxford university press. New York, U.S.A. 

  14. Grottum JA and Sigholt T. 1996. Acute toxicity of carbon dioxide on European seabass (Dicentrarchus labrax): Mortality and effects on plasma ions. Comp Biochem Physiol A Physiol 115, 323-327. http://dx.doi.org/10.1016/S0300-9629(96)00100-4. 

  15. Hannedoeche T, Lazaro M, Delgado AG, Boitard C, Lacour B and Grunfeld JP. 1991. Feedback-mediated reduction in glomerular filtration during acetazolamide infusion in insulindependent diabetic patients. Clin Sci 81, 457. http://dx.doi.org/10.1042/cs0810457. 

  16. Kaur M, Atif F, Ali M, Rehman H and Raisuddin S. 2005. Heat stress-induced alterations of antioxidants in the freshwater fish Channa punctata Bloch. J Fish Biol 67, 1653-1665. http://dx.doi.org/10.1111/j.1095-8649.2005.00872.x. 

  17. Kikkawa T, Ishimatsu A and Kita J. 2003. Acute $CO_2$ tolerance during the early developmental stages of four marine teleosts. Environ Toxicol 18, 375-382. http://dx.doi.org/10.1002/tox.10139. 

  18. Kikkawa T, Kita J and Ishimatsu A. 2004. Comparison of the lethal effect of $CO_2$ and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar Pollut Bull 48, 108-110. http://dx.doi.org/10.1016/S0025-326X(03)00367-9. 

  19. Kim YK, Jeong JB, Lee MK, Park SI, Park MA, Choe MK and Yeo IK. 2011. Pathophysiology of olive flounder Paralichthys olivaceus suffering from emaciation. J Fish Pathol 24, 11-18. http://dx.doi.org/10.7847/jfp.2011.24.1.011. 

  20. Knutzen J. 1981. Effects of decreased pH on marine organisms. Mar Pollut Bull 12, 25-29. http://dx.doi.org/10.1016/0025-326X(81)90136-3. 

  21. Kuwatani Y and Nishii T. 1969. Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull Jpn Soc Sci Fish. 35, 242-250. http://dx.doi.org/10.2331/suisan.35.342. 

  22. Lai F, Jutfelt F and Nilsson GE. 2015. Altered neurotransmitter function in $CO_2$ -exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv Physiol 3, cov018. http://dx.doi.org/10.1093/conphys/cov018. 

  23. Lie O, Waagbo R and Sandnes K. 1988. Growth and chemical composition of adult Atlantic salmon (Salmo salar) fed dry and silage-based diets. Aquaculture 69, 343-353. http://dx.doi.org/10.1016/0044-8486(88)90341-9. 

  24. McDonald DG and Wood CM. 1981. Branchial and renal acid and ion fluxes in the rainbow trout, Salnro guirdneri, at low environmentaI pH. J Exp Biol 93, 181-118. 

  25. Molander DW, Wroblewski F and LaDue JS. 1955. Serum glutamic oxalacetic transaminase as an index of hepatocellular integrity. J Lab Clin Med 46, 831. 

  26. Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun SS and Brauner CJ. 2015. Responses of pink salmon to $CO_2$ -induced aquatic acidification. Nat Clim Chang 5, 950-955. http://dx.doi.org/10.1038/nclimate2694. 

  27. Parihar MS, Dubey AK, Javeri T and Prakash P. 1996. Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J Therm Biol 21, 323-330. http://dx.doi.org/10.1016/S0306-4565(96)00016-2. 

  28. Parihar MS, Javeri T, Hemnani T, Dubey AK and Prakash P. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol 22, 151-156. http://dx.doi.org/10.1016/S0306-4565(97)00006-5. 

  29. Portner HO, Reipschlager A and Heisler N. 1998. Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201, 43-55. 

  30. Portner HO, Langenbuch M and Reipschlager A. 2004. Biological impact of elevated ocean $CO_2$ concentrations: lessons from animal physiology and earth history. J Oceanogr 60, 705-718. http://dx.doi.org/10.1007/s10872-004-5763-0. 

  31. Roche H and Boge G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41, 27-43. http://dx.doi.org/10.1016/0141-1136(95)00015-1. 

  32. Saunders RL, Henderson EB, Harmon PR, Johnston CE and Eales JG. 1983. Effects of low environmental pH on smolting of Atlantic salmon (Salmo salar). Can J Fish Aquatu Sci 408, 1203-1211. http://dx.doi.org/10.1139/f83-137. 

  33. Schreck CB. 1982. Stress and rearing of salmonids. Aquaculture 28, 241-249. http://dx.doi.org/10.1016/0044-8486(82)90026-6. 

  34. Solomon S, Qin D, Manning, M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL. 2007. Climate change 2007: The physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, U.S.A., 97. 

  35. Winston GW and Di Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19, 137-161. 

  36. Young G, Bjornsson BT, Prunet P, Lin RJ and Bern HA. 1989. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): plasma prolactin, growth hormone, thyroid hormones, and cortisol. Gen Comp Endocrinol 74, 335-345. http://dx.doi.org/10.1016/S0016-6480(89)80029-2. 

  37. Zhang J, Shen H, Wang X, Wu J and Xue Y. 2004. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55, 167-174. http://dx.doi.org/10.1016/j.chemosphere.2003.10.048. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로