최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of the Korean Data & Information Science Society = 한국데이터정보과학회지, v.28 no.3, 2017년, pp.533 - 545
김재오 (고려대학교 통계학과) , 조형준 (고려대학교 통계학과) , 방성완 (육군사관학교 수학과)
Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonline...
Asuncion, A. and Newman, D. (2007). UCI machine learning repository, Available at ttp://www.ics.uci.edu/-mlearn/MLRepository.tml.
Breiman, L., Friedman, J., Stone, C. and Olshen, R. (1984). Classification and regression trees, Chapman & Hall/CRC, Belmont, CA.
Chaudhuri, P. and Loh, W. Y. (2002). Nonparametric estimation of conditional quantiles using quantile regression trees. Bernoulli , 8, 561-576.
De'ath, G. (2012). Mvpart: multivariate partitioning. R package version 1.6-0.
Eo, SH. and Cho, H. (2014). Tree-structured mixed-effects regression modeling for longitudinal data. Journal of Computational and Graphical Statistics, 23, 740-760.
Hallin, M., Lu, Z. and Yu, K. (2009). Local linear spatial quantile regression. Bernoulli, 15, 659-686.
Kim, H. and Loh, W. Y. (2011). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96, 589-604.
Koenker, R. (2005). Quantile regression, Cambridge University Press, Cambridge, UK.
Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
Koenker R. and Mizera I. (2004). Penalized triograms: total variation regularization for bivariate smoothing. Journal of the Royal Statistical Society B, 66, 145-163.
Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces. Journal of the American Statistical Association, 102, 255-268.
Liu Y. and Wu Y. (2011). Simultaneous multiple non-crossing quantile regression estimation using kernel constraints. Journal of Nonparametric statistics, 23, 415-437.
Loh, W. Y. (2002). Regression tress with unbiased variable selection and interaction detection. Statistica Sinica, 12, 361-386.
Loh, W. Y. (2009). Improving the precision of classification trees. The Annals of Applied Statistics, 3, 1710-1737.
Loh, W. Y. and Wei, Z. (2013). Regression trees for longitudinal and multiresponse data. The Annals of Applied Statistics, 7, 495-522.
Loh, W. Y. and Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis. Journal of the American Statistical Association, 83, 715-725.
Segal, M. (1992). Tree-structured methods for longitudinal data. Journal of the American Statistical Association, 87, 407-418.
Yu, K. and Jones, M. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237.
Zhang, H. (1998). Classification trees for multiple binary responses. Journal of the American Statistical Association, 93, 180-193.
Zhang, H. and Ye, Y. (2008). A tree-based method for modeling a multivariate ordinal response. Statistics and its Interface, 1, 169.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.