$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Detection and molecular characterization of Hepatozoon canis, Babesia vogeli, Ehrlichia canis, and Anaplasma platys in dogs from Metro Manila, Philippines 원문보기

Korean journal of veterinary research = 대한수의학회지, v.57 no.2, 2017년, pp.79 - 88  

Adao, Davin Edric V. (Institute of Biology, College of Science, Natural Sciences Research Institute, University of the Philippines Diliman) ,  Herrera, Charles Michael T. (Institute of Biology, College of Science, Natural Sciences Research Institute, University of the Philippines Diliman) ,  Galarion, Luiza H. (Institute of Biology, College of Science, Natural Sciences Research Institute, University of the Philippines Diliman) ,  Bolo, Nicole R. (Institute of Biology, College of Science, Natural Sciences Research Institute, University of the Philippines Diliman) ,  Carlos, Rhodora S. (Carlos Veterinary Clinic) ,  Carlos, Enrique T. (Makati Dog and Cat Hospital) ,  Carlos, Sixto S. (Makati Dog and Cat Hospital) ,  Rivera, Windell L. (Institute of Biology, College of Science, Natural Sciences Research Institute, University of the Philippines Diliman)

Abstract AI-Helper 아이콘AI-Helper

The study of canine vector-borne diseases in the Philippines started in the 1970s but only gained interest in the past decade. Characterization of such diseases in the Philippines remains incomplete, thus, it is necessary to obtain additional information on the prevalence and diversity of canine tic...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Further identification of Anaplasma spp. was conducted by sequencing larger parts of the16S rRNA gene using the primer pairs fD1/EHR16SR and EHR16SD/Rp2 [12]. PCR amplification was performed using previously published protocols for Hep-F/Hep-R [16], PIRO-A1/PIRO-B [5], and EHR16SD/EHR16SR [34].
  • The primers Hep-F/Hep-R and PIRO-A1/PIRO-B target the18S rRNA genes of their respective CVB pathogens while primers EHR16SD, EHR16SR, fD1, and Rp2 amplify the 16S rRNA gene of Anaplasmataceae. PCR was performed thrice on positive samples and sent to the Philippine Genome Center for sequencing to rule out false positives. Sequences were aligned using the Clustal W feature of BioEdit 7.
  • 0 [11]. Sequences were then uploaded onto the nucleotide BLAST website (National Center for Biotechnology Information, USA) to determine the most similar sequences and confirm their species identity.
  • All multiplex PCR experiments were performed with KAPA2G Fast multiplex kit according to the manufacturer’s protocol with 0.25 µM of each multiplex primer.
  • 25 µM of each multiplex primer. The optimum annealing temperature was obtained using gradient PCR (58, 59, 60, 61, and 62℃ in each) on DNA extracts of E. canis, B. canis, and H. canis. Single reaction PCR was performed on DNA extracts of E.
  • The multiplex PCR primers were able to amplify their respective targets at all temperatures used in the gradient PCR experiment with lower limits of detection of 4.5 ng/µL, 19.1 ng/µL, and 2.4 ng/µL for H. canis, B. canis, and E. canis DNA, respectively (data not shown).

대상 데이터

  • A total of 114 canine blood samples were obtained from the Makati Dog and Cat Hospital in Makati City, Philippines and the Carlos Veterinary Clinic in Parañaque City, Philippines from 2013-2014.
  • KR261620-KR261622), and uncultured Anaplasma sp. (GenBank accession nos. JN862824 and JX402624) with E. canis (GenBank accession no. U26740) as an outgroup.
  • Consensus phylogenetic tree based on the maximum likelihood (ML) tree using partial 18S rRNA gene sequences (517 unambiguously aligned nucleotide positions) of 15 Hepatozoon specimens and 1 outgroup species (Sarcocystis arctosi). The bootstrap consensus tree was constructed using the HKY model and inferred from 1,000 replicates. The bootstrap values of the three phylogenetic methods used are shown in the order ML/neighbor joining (NJ) and maximum parsimony (MP).
  • Consensus phylogenetic tree based on the maximum likelihood (ML) tree using full 16S rRNA gene sequences (819 unambiguously aligned nucleotide positions) of 30 Anaplasma specimens and 1 outgroup species (Ehrlichia canis). The bootstrap consensus tree was constructed using the TrN model and inferred from 1,000 replicates. The bootstrap values of the three phylogenetic methods used are shown in the order ML/neighbor joining (NJ) and maximum parsimony (MP).
  • Oklahoma dog and Babesia gibsoni). The bootstrap consensus tree was constructed using the GTR+G model and inferred from 1,000 replicates. The bootstrap values of the three phylogenetic methods used are shown in the order ML/neighbor joining (NJ) and maximum parsimony (MP).
  • platys infections in dogs in Metro Manila, Philippines are present in low prevalence. In this study, H. canis, B. vogeli, E. canis and A. platys were found in 5.26%, 5.26%, 5.26%, and 3.51%, respectively, of 114 dogs admitted at the Makati Dog and Cat Hospital and the Carlos Veterinary Clinic. Phylogenetic analyses and BLAST results confirm the identification of these with high bootstrap support.
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. Baneth G, Mathew JS, Shkap V, Macintire DK, Barta JR, Ewing SA. Canine hepatozoonosis: two disease syndromes caused by separate Hepatozoon spp. Trends Parasitol 2003, 19, 27-31. 

  2. Baticados AM, Baticados WN, Carlos ET, Carlos SMEAS, Villarba LA, Subiaga SG, Magcalas JM. Parasitological detection and molecular evidence of Hepatozoon canis from canines in Manila, Philippines. Vet Med Res Rep 2010, 1, 7-10. 

  3. Brecher ME, Hay SN. Bacterial contamination of blood components. Clin Microbiol Rev 2005, 18, 195-204. 

  4. Bulla C, Takahira RK, Araujo JP Jr, Aparecida Trinca L, Souza Lopes R, Wiedmeyer CE. The relationship between the degree of thrombocytopenia and infection with Ehrlichia canis in an endemic area. Vet Res 2004, 35, 141-146. 

  5. Cardoso L, Yisaschar-Mekuzas Y, Rodrigues FT, Costa A, Machado J, Diz-Lopes D, Baneth G. Canine babesiosis in northern Portugal and molecular characterization of vectorborne co-infections. Parasit Vectors 2010, 3, 27. 

  6. Carlos ET, Carlos ER, Calalay FT, Cabiles CC. Babesia canis: clinical observations in dogs in the Philippines. Philipp J Vet Med 1972, 11, 81-91. 

  7. Carlos ET, Cruz FB, Cabiles CC, Calalay FT, Carlos ER. Hepatozoon sp. in the WBC of a human patient. UP Vet 1971, 15, 5-7. 

  8. Corales JMI, Viloria VV, Venturina VM, Mingala CN. The prevalence of Ehrlichia canis, Anaplasma platys and Babesia spp. in dogs in Nueva Ecija, Philippines based on multiplex polymerase chain reaction (mPCR) assay. Ann Parasitol 2014, 60, 267-272. 

  9. Foldvari G, Hell E, Farkas R. Babesia canis canis in dogs from Hungary: detection by PCR and sequencing. Vet Parasitol 2005, 127, 221-226. 

  10. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59, 307-321. 

  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41, 95-98. 

  12. Inokuma H, Beppu T, Okuda M, Shimada Y, Sakata Y. Detection of ehrlichial DNA in Haemaphysalis ticks recovered from dogs in Japan that is closely related to a novel Ehrlichia sp. found in cattle ticks from Tibet, Thailand, and Africa. J Clin Microbiol 2004, 42, 1353-1355. 

  13. Inokuma H, Okuda M, Ohno K, Shimoda K, Onishi T. Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet Parasitol 2002, 106, 265-271. 

  14. Inpankaew T, Hii SF, Chimnoi W, Traub RJ. Canine vector-borne pathogens in semi-domesticated dogs residing in northern Cambodia. Parasit Vectors 2016, 9, 253. 

  15. Irwin PJ. Canine babesiosis: from molecular taxonomy to control. Parasit Vectors 2009, 2 (Suppl 1), S4. 

  16. Jefferies R, Ryan UM, Muhlnickel CJ, Irwin PJ. Two species of canine Babesia in Australia: detection and characterization by PCR. J Parasitol 2003, 89, 409-412. 

  17. Kelly PJ, Lucas H. Failure to demonstrate Babesia, Anaplasma or Ehrlichia in thrombocytopenic dogs from St Kitts. J Infect Dev Ctries 2009, 3, 561-563. 

  18. Kledmanee K, Suwanpakdee S, Krajangwong S, Chatsiriwech J, Suksai P, Suwannachat P, Sariya L, Buddhirongawatr R, Charoonrut P, Chaichoun K. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood. Southeast Asian J Trop Med Public Health 2009, 40, 35-39. 

  19. Koh FX, Panchadcharam C, Tay ST. Vector-borne diseases in stray dogs in peninsular Malaysia and molecular detection of Anaplasma and Ehrlichia spp. from Rhipicephalus sanguineus (Acari: Ixodidae) ticks. J Med Entomol 2016, 53, 183-187. 

  20. Liu M, Ruttayaporn N, Saechan V, Jirapattharasate C, Vudriko P, Moumouni PFA, Cao S, Inpankaew T, Ybanez AP, Suzuki H, Xuan X. Molecular survey of canine vectorborne diseases in stray dogs in Thailand. Parasitol Int 2016, 65, 357-361. 

  21. Macieira DB, Messick JB, Cerqueira AMF, Freire IMA, Linhares GFC, Almeida NKO, Almosny NRP. Prevalence of Ehrlichia canis infection in thrombocytopenic dogs from Rio de Janeiro, Brazil. Vet Clin Pathol 2005, 34, 44-48. 

  22. Maggi RG, Birkenheuer AJ, Hegarty BC, Bradley JM, Levy MG, Breitschwerdt EB. Comparison of serological and molecular panels for diagnosis of vector-borne diseases in dogs. Parasit Vectors 2014, 7, 127. 

  23. Mylonakis ME, Koutinas AF, Billinis C, Leontides LS, Kontos V, Papadopoulos O, Rallis T, Fytianou A. Evaluation of cytology in the diagnosis of acute canine monocytic ehrlichiosis (Ehrlichia canis): a comparison between five methods. Vet Microbiol 2003, 91, 197-204. 

  24. Novilla MN, Kwapien RP, Peneyra RS. Occurrence of canine hepatozoonosis in the Philippines. Proc Helminthol Soc Wash 1977, 44, 98-101. 

  25. Otranto D, Dantas-Torres F, Breitschwerdt EB. Managing canine vector-borne diseases of zoonotic concern: part one. Trends Parasitol 2009, 25, 157-163. 

  26. Parola P, Roux V, Camicas JL, Baradji I, Brouqui P, Raoult D. Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg 2000, 94, 707-708. 

  27. Piratae S, Pimpjong K, Vaisusuk K, Chatan W. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand. Ann Parasitol 2015, 61, 183-187. 

  28. Sabino CV, Weese JS. Contamination of multiple-dose vials in a veterinary hospital. Can Vet J 2006, 47, 779-782. 

  29. Shaw SE, Day MJ, Birtles RJ, Breitschwerdt EB. Tickborne infectious diseases of dogs. Trends Parasitol 2001, 17, 74-80. 

  30. Suksawat J, Xuejie Y, Hancock SI, Hegarty BC, Nilkumhang P, Breitschwerdt EB. Serologic and molecular evidence of coinfection with multiple vector-borne pathogens in dogs from Thailand. J Vet Intern Med 2001, 15, 453-462. 

  31. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, 2003. 

  32. Taboada J, Lobetti R. Babesiosis. In: Green CE (ed.). Infectious Diseases of the Dog and Cat. 3rd ed. pp. 722-736, WB Saunders, Philadelpia, 2006. 

  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013, 30, 2725-2729. 

  34. Watanabe M, Oikawa T, Hiraoka H, Kaneko N, Itamoto K, Mizuno T, Okuda M, Inokuma H. Experimental inoculation of beagle dogs with Ehrlichia species detected from Ixodes ovatus. Vet Parasitol 2006, 136, 147-154. 

  35. Wong SSY, Teng JLL, Poon RWS, Choi GKY, Chan KH, Yeung ML, Hui JJY, Yuen KY. Comparative evaluation of a point-of-care immunochromatographic test SNAP 4Dx with molecular detection tests for vector-borne canine pathogens in Hong Kong. Vector Borne Zoonotic Dis 2011, 11, 1269-1277. 

  36. Ybanez AP. First molecular evidence of Ehrlichia canis infection in dogs with probable disease relapse in the Philippines. J Adv Vet Res 2014, 4, 184-188. 

  37. Ybanez AP. First report on Anaplasma platys infection in a dog in the Philippines. Iran J Vet Med 2013, 7, 227-231. 

  38. Ybanez AP, Perez ZO, Gabotero SR, Yandug RT, Kotaro M, Inokuma H. First molecular detection of Ehrlichia canis and Anaplasma platys in ticks from dogs in Cebu, Philippines. Ticks Tick Borne Dis 2012, 3, 288-293. 

  39. Ybanez AP, Ybanez RHD, Talle MG, Liu M, Moumouni PFA, Xuan X. First report on Babesia vogeli infection in dogs in the Philippines. Parasitol Int 2017, 66, 813-815. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로