$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

금 나노입자를 이용한 광열치료 연구 동향
Research Trends in Photothermal Therapy Using Gold Nanoparticles 원문보기

공업화학 = Applied chemistry for engineering, v.28 no.4, 2017년, pp.383 - 396  

김봉근 (명지대학교 화학공학과) ,  여도경 (명지대학교 화학공학과) ,  나현빈 (명지대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

광열치료는 빛을 받아 열로 변환하는 광열특성을 가진 광열변환기를 통해 세포의 병변, 특히 암세포를 선택적으로 사멸시키는 치료법이다. 광열특성을 가지는 다양한 물질들이 광열치료에 적용되어왔지만, 그중에서도 금 나노입자는 그 고유한 물리화학적 특성으로 지난 20년 가까이 과학자와 의료인들에게 큰 관심을 받아왔다. 본 총설에서는 금 나노입자를 사용하여 광열치료효과를 향상시키기 위한 전략들을 최근의 광열치료 연구를 중심으로 정리하여 서술하였다. 특히, 광열변환기로서 사용되는 다양한 금 나노입자 구조체의 합성 및 광학 성질 제어를 통해 광열변환 효율 향상을 시도한 연구들과 금 나노입자를 병소에 효과적으로 축적시키기 위한 선별적 전달 방법들을 논의하였으며, 마지막에는 근래에 적극적으로 시도되고 있는 다른 치료법 및 진단기술과의 융합 연구들을 소개했다.

Abstract AI-Helper 아이콘AI-Helper

The photothermal therapy is a method of cell ablation using the heat converted from the incident light by photothermal transducers. It offers a selective treatment to desired abnormal cells, in particular, tumor tissues. Among various photothermal agents, gold nanoparticles (Au NPs) have received en...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
금의 안전성과 관련된 특징은 무엇인가? 그리고 유기 염료 분자에 비해 약 백만 배 정 도 많은 빛을 흡수할 수 있고, 흡수한 빛을 거의 100% 열로 변환한다 [17]. 또한 입자 표면을 화학적으로 개질하기도 쉬우며[18], 금 자체가 화학적으로 비활성이기 때문에 유의미한 정도의 세포독성을 나타내 지 않는다[19].
광열치료에 고출력 레이저를 이용할 수 없는 이유는 무엇인가? 정상세포와 비교해서 빠르게 자라나는 암세포는 혈액의 공급이 좋지 못해 열에 대한 저항성이 나쁘므로, 열은 암세포를 선별적으로 사멸시킬 수 있는 효율적인 도구라 할 수 있다[4]. 그러나 열을 발생시키기 위해 고출력의 레이저를 직접 피부에 조사한다면 과열로 인한 화상, 수포, 통증과 같은 병리적인 현상을 야기할 수 있다. 레이저에 의한 열 발생은 조사 시간과 온도에 의해 결정되므로 이 두 요소의 조합이 문턱값 이하로 유지된다면 피부 손 상을 피할 수 있으나 그렇게 된다면 병소에서 열이 제대로 발생되지 않아 암세포 또한 사멸하지 않을 가능성이 크다[5].
광열치료는 무엇인가? 광열치료(photothermal therapy)는 빛을 조사해 열을 발생시킴으로써, 국소적인 가열을 통해 비정상적인 세포, 특히 암세포를 선택적으로 사멸시키는 치료법이다[1-3]. 정상세포와 비교해서 빠르게 자라나는 암세포는 혈액의 공급이 좋지 못해 열에 대한 저항성이 나쁘므로, 열은 암세포를 선별적으로 사멸시킬 수 있는 효율적인 도구라 할 수 있다[4].
질의응답 정보가 도움이 되었나요?

참고문헌 (98)

  1. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549-13554 (2003). 

  2. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends Biotechnol., 24, 62-67 (2006). 

  3. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269, 57-66 (2008). 

  4. J. S. Choi and S. Y. Kim, Synthesis and characterization of photosensitizer-conjugated gold nanorods for photodynamic/photothermal therapy, Appl. Chem. Eng., 27, 599-605 (2016). 

  5. T. Sugiura, D. Matsuki, J. Okajima, A. Komiya, S. Mori, S. Maruyama, and, T. Kodama, Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling, Nano Res., 8, 3842-3852 (2015). 

  6. G. v. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res., 69, 3892-3900 (2009). 

  7. B. Jang, Y. S. Kim, and Y. Choi, Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation, Small, 7, 265-270 (2011). 

  8. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles, Photochem. Photobiol., 82, 412-417 (2006). 

  9. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 41, 1578-1586 (2008). 

  10. S. Kommareddy, S. B. Tiwari, and M. M. Amiji, Long-circulating polymeric nanovectors for tumor-selective gene delivery, Technol. Cancer Res. Treat., 4, 615-625 (2005). 

  11. W. Cai, T. Gao, H. Hong, and J. Sun, Applications of gold nanoparticles in cancer nanotechnology, Nanotechnol. Sci. Appl., 1, 17-32 (2008). 

  12. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan, Mediating tumor targeting efficiency of nanoparticles through design, Nano Lett., 9, 1909-1915 (2009). 

  13. A. S. Thakor and S. S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy, CA Cancer J. Clin., 63, 395-418 (2013). 

  14. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426 (1999). 

  15. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence, J. Phys. Chem. A, 103, 1165-1170 (1999). 

  16. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115-2120 (2006). 

  17. C. Iancu, Photothermal therapy of human cancers (PTT) using gold nanoparticles, Biotechnol. Mol. Biol. Nanomed., 1, 53-60 (2013). 

  18. A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol. Pharm., 10, 831-847 (2013). 

  19. A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J. Nanopart. Res., 12, 2313-2333 (2010). 

  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 23, 217-228 (2007). 

  21. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, A new era for cancer treatment: gold nanoparticle-mediated thermal therapies, Small, 7, 169-183 (2011). 

  22. R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316-317 (2001). 

  23. A. C. Anselmo and S. Mitragotri, Nanoparticles in the clinic, Bioeng. Transl. Med., 1, 10-29 (2016). 

  24. E. Buytaert, M. Dewaele, and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Bioeng. Transl. Med., 1776, 86-107 (2007). 

  25. P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, Cell death pathways in photodynamic therapy of cancer, Cancers, 3, 2516-2539 (2011). 

  26. R. D. Bonfil, O. D. Bustuoabad, R. A. Ruggiero, R. P. Meiss, and C. D. Pasqualini, Tumor necrosis can facilitate the appearance of metastases, Clin. Exp. Metastasis, 6, 121-129 (1988). 

  27. Y. Wu and B. P. Zhou, Inflammation: a driving force speeds cancer metastasis, Cell Cycle, 8, 3267-3273 (2009). 

  28. K. F. Chu and D. E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nat. Rev. Cancer., 14, 199-208 (2014). 

  29. M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer, J. Photochem. Photobiol., B, 170, 58-64 (2017). 

  30. M. Aioub and M. A. El-Sayed, A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles, J. Am. Chem. Soc., 138, 1258-1264 (2016). 

  31. A. M. Gamal-Eldeen, D. Moustafa, S. M. El-Daly, E. A. El-Hussieny, S. Saleh, M. Khoobchandani, K. L. Bacon, S. Gupta, K. Katti, R. Shukla, and K. V. Katti, Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice, J. Photochem. Photobiol. B, 163, 47-56 (2016). 

  32. M. R. K. Ali, Y. Wu, T. Han, X. Zang, H. Xiao, Y. Tang, R. Wu, F. M. Fernandez, and M. A. El-Sayed, Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy, J. Am. Chem. Soc., 138, 15434-15442 (2016). 

  33. S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, I. Pal, A. Parekh, R. Patra, D. Dhara, P. K. Dutta, and M. Mandal, Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy, Biochim. Biophys. Acta, 1861, 3039-3052 (2017). 

  34. A. Murshid, J. Gong, M. A. Stevenson, and S. K. Calderwood, Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come, Expert Rev. Vaccines, 10, 1553-1568 (2011). 

  35. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084-1094 (2006). 

  36. X. Huang and M. A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13-28 (2010). 

  37. S. Paterson, S. A. Thompson, J. Gracie, A. W. Wark, and R. de la Rica, Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy, Chem. Sci., 7, 6232-6237 (2016). 

  38. Y. Xia, X. Wu, J. Zhao, J. Zhao, Z. Li, W. Ren, Y. Tian, A. Li, Z. Shen, and A. Wu, Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer, Nanoscale, 8, 18682-18692 (2016). 

  39. C. Iodice, A. Cervadoro, A. Palange, J. Key, S. Aryal, M. R. Ramirez, C. Mattu, G. Ciardelli, B. E. O'Neill, and P. Decuzzi, Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs, Opt. Lasers Eng., 76, 74-81 (2016). 

  40. X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi, and M. Gao, Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo, Adv. Mater., 29, 1604894 (2017). 

  41. Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z.-Y. Li, L. V. Wang, Y. Liu, and Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, AS Nano, 7, 2068-2077 (2013). 

  42. ClinicalTrials.gov, Pilot study of AuroLase (tm) therapy in refractory and/or recurrent tumors of the head and neck, U.S., National Institute of Health. http://clinicaltrials.gov/ct2/show/NCT 00848042 (2016). 

  43. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B, 110, 7238-7248 (2006). 

  44. N. R. Jana, Gram-Scale Synthesis of Soluble, Near-monodisperse gold nanorods and other anisotropic nanoparticles, Small, 1, 875-882 (2005). 

  45. X. Huang, S. Neretina, and M. A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater., 21, 4880-4910 (2009). 

  46. K. A. Kozek, K. M. Kozek, W. C. Wu, S. R. Mishra, and J. B. Tracy, Large-scale synthesis of gold nanorods through continuous secondary growth, Chem. Mater., 25, 4537-4544 (2013). 

  47. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc., 2, 2182-2190 (2007). 

  48. Z. Li, H. Huang, S. Tang; Y. Li, X. F. Yu; H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy, Biomaterials, 74, 144-154 (2016). 

  49. S. C. Gad, K. L. Sharp, C. Montgomery, J. D. Payne, and G. P. Goodrich, Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells), Int. J. Toxicol., 31, 584-594 (2012). 

  50. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33-40 (2004). 

  51. S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, Nanoshell particles: synthesis, properties and applications, Curr. Sci., 91, 1038-1052 (2006). 

  52. M. R. Rasch, K. V. Sokolov, and B. A. Korgel, Limitations on the optical tunability of small diameter gold nanoshells, Langmuir, 25, 11777-11785 (2009). 

  53. J. Zhang, J. Li, N. Kawazoe, and G. Chen, Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy, J. Mater. Chem. B, 5, 245-253 (2017). 

  54. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology, 23, 075102 (2012). 

  55. B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater., 15, 1957-1962 (2003). 

  56. M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis, Int. J. Nanomed., 11, 4849-4863 (2016). 

  57. Y. Liu, J. R. Ashton, E. J. Moding, H. Yuan, J. K. Register, A. M. Fales, J. Choi, M. J. Whitley, X. Zhao, Y. Qi, Y. Ma, G. Vaidyanathan, M. R. Zalutsky, D. G. Kirsch, C. T. Badea, and T. Vo-Dinh, A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy, Theranostics, 5, 946-960 (2015). 

  58. P. Qiu, M. Yang, X. Qu, Y. Huai, Y. Zhu, and C. Mao, Tuning photothermal properties of gold nanodendrites for in vivo cancer therapy within a wide near infrared range by simply controlling their degree of branching, Biomaterials, 104, 138-144 (2016). 

  59. B. Sun, J. Wu, S. Cui, H. Zhu, W. An, Q. Fu, C. Shao, A. Yao, B. Chen, and D. Shi, In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy, Nano Res., 10, 37-48 (2017). 

  60. A. Hatef, S. Fortin-Deschenes, E. Boulais, F. Lesage, and M. Meunier, Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse, Int. J. Heat Mass Trans., 89, 866-871 (2015). 

  61. L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells, Int. J. Heat Mass Trans., 54, 5459-5469 (2011). 

  62. Y. Ren, H. Qi, Q. Chen, and L. Ruan, Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy, Int. J. Heat Mass Trans., 106, 212-221 (2017). 

  63. M. Borzenkov, A. Maattanen, P. Ihalainen, M. Collini, E. Cabrini, G. Dacarro, P. Pallavicini, and G. Chirico, Fabrication of inkjet-printed gold nanostar patterns with photothermal properties on paper substrate, ACS Appl. Mater. Interfaces, 8, 9909-9916 (2016). 

  64. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev., 60, 1307-1315 (2008). 

  65. X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, and S. Nie, A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands, ACS Nano, 4, 5887-5896 (2010). 

  66. L. Brannon-Peppas and J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev., 56, 1649-1659 (2004). 

  67. R. Kunert and D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451-3461 (2016). 

  68. J. Sudimack and R. J. Lee, Targeted drug delivery via the folate receptor, Adv. Drug Deliv. Rev., 41, 147-162 (2000). 

  69. W. Chen, S. G. Allen, A. K. Reka, W. Qian, S. Han, J. Zhao, L. Bao, V. G. Keshamouni, S. D. Merajver, and J. Fu, Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics, BMC Cancer, 16, 614 (2016). 

  70. T. W. Huang, S. H. Tseng, C. C. Lin, C. H. Bai, C. S. Chen, C. S. Hung, C. H. Wu, and K. W. Tam, Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials, World J. Surg. Oncol., 11, 15 (2013). 

  71. M. Neshatian, S. Chung, D. Yohan, C. Yang, and D. B. Chithrani, Determining the size dependence of colloidal gold nanoparticle uptake in a tumor-like interface (hypoxic), Colloids Interface Sci. Commun., 1, 57-61 (2014). 

  72. M. Yang, Y. Liu, W. Hou, X. Zhi, C. Zhang, X. Jiang, F. Pan, Y. Yang, J. Ni, and D. Cui, Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer, Nanoscale, 9, 334-340 (2017). 

  73. S. Wang, Z. Teng, P. Huang, D. Liu, Y. Liu, Y. Tian, J. Sun, Y. Li, H. Ju, X. Chen, and G. Lu, Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars, Small, 11, 1801-1810 (2015). 

  74. Y. Du, Q. Jiang, N. Beziere, L. Song, Q. Zhang, D. Peng, C. Chi, X. Yang, H. Guo, G. Diot, V. Ntziachristos, B. Ding, and J. Tian, DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy, Adv. Mater., 28, 10000-10007 (2016). 

  75. S. Kang, S. H. Bhang, S. Hwang, J. K. Yoon, J. Song, H.-K. Jang, S. Kim, and B.-S. Kim, Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy, ACS Nano, 9, 9678-9690 (2015). 

  76. Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li, C. Zhang, F. Pan, K. Wang, Y. Yang, J. Martinez de la Fuentea, and D. Cui, Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy, ACS Nano, 10, 2375-2385 (2016). 

  77. N. Zhang, X. Xu, X. Zhang, D. Qu, L. Xue, R. Mo, and C. Zhang, Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy, Int. J. Pharm., 497, 210-221 (2016). 

  78. M. Singh, D. C. C. Harris-Birtill, Y. Zhou, M. E. Gallina, A. E. G. Cass, G. B. Hanna, and D. S. Elson, Application of gold nanorods for photothermal therapy in ex vivo human oesophagogastric adenocarcinoma, J. Biomed. Nanotechnol., 12, 481-490 (2016). 

  79. S. I. Hussein, A. S. Sultan, and N. Y. Yaseen, Gold nanoparticles for photothermal therapy of cancerous cells in vitro, Int. J. Curr. Microbiol. Appl. Sci., 5, 261-266 (2016). 

  80. X. Kang, X. Guo, X. Niu, W. An, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, and Q. Zhag, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer, Sci. Rep., 7, 42069 (2017). 

  81. M. Yu, F. Guo, J. Wang, F. Tan, and N. Li, Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy, ACS Appl. Mater. Interfaces, 7, 17592-17597 (2015). 

  82. E. L. L. Yeo, J. U. J. Cheah, D. J. H. Neo, W. I. Goh, P. Kanchanawong, K. C. Soo, P. S. P. Thong, and J. C. Y. Kah, Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy, J. Mater. Chem. B, 5, 254-268 (2017). 

  83. M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy, ACS Nano, 11, 579-586 (2017). 

  84. Y. C. Ou, J. A. Webb, S. Faley, D. Shae, E. M. Talbert, S. Lin, C. C. Cutright, J. T. Wilson, L. M. Bellan, and R. Bardhan, Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer, ACS Omega, 1, 234-243 (2016). 

  85. M. R. K. Ali, H. R. Ali, C. R. Rankin, M. A. El-Sayed, Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy, Biomaterials, 102, 1-8 (2016). 

  86. B. K. Jung, Y. K. Lee, J. Hong, H. Ghandehari, and C. O. Yun, Mild hyperthermia Induced by gold nanorod-mediated plasmonic photothermal therapy enhances transduction and replication of oncolytic adenoviral gene delivery, ACS Nano, 10, 10533-10543 (2016). 

  87. B. K. Wang, X. F. Yu, J. H. Wang, Z. B. Li, P. H. Li, H. Wang, L. Song, P. K. Chu, and C. Li, Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing, Biomaterials, 78, 27-39 (2016). 

  88. F. Pene, E. Courtine, A. Cariou, and J. P. Mira, Toward theragnostics, Crit. Care Med., 37, S50-S58 (2009). 

  89. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem., 77, 3261-3266 (2005). 

  90. D. Radziuk and H. Moehwald, Highly effective hot spots for SERS signatures of live fibroblasts, Nanoscale, 6, 6115-6126 (2014). 

  91. W. Li and X. Chen, Gold nanoparticles for photoacoustic imaging, Nanomedicine (Lond.), 10, 299-320 (2015). 

  92. T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, Two-photon luminescence properties of gold nanorods, Biomed. Opt. Express, 4, 584-595 (2013). 

  93. L. Y. Bai, X. Q. Yang, J. An, L. Zhang, K. Zhao, M. Y. Qin, B. Y. Fang, C. Li, Y. Xuan, X. S. Zhang, Y. D. Zhao, and Z. Y. Ma, Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy, Nanotechnology, 26, 315701 (2015). 

  94. M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer, Nanoscale, 8, 4452-4457 (2016). 

  95. O. Betzer, R. Ankri, M. Motiei, and R. Popovtzer, Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy, J. Nanomater., 2015, 7 (2015). 

  96. Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, X. Qiao, H. Hu, Y. Liang, H. Zhu, and D. Chen, Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser, Int. J. Nanomed., 10, 4747-4761 (2015). 

  97. C. Du, A. Wang, J. Fei, J. Zhao, and J. Li, Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy, J. Mater. Chem. B, 3, 4539-4545 (2015). 

  98. M. Azhdarzadeh, F. Atyabi, A. A. Saei, B. S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, and R. Dinarvand, Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer, Colloids Surf., B, 143, 224-232 (2016). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로