$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

업컨버전 나노입자를 이용한 광역학치료 연구 동향
Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles 원문보기

공업화학 = Applied chemistry for engineering, v.29 no.2, 2018년, pp.138 - 146  

임세진 (전남대학교 화학공학부) ,  이송렬 (전남대학교 화학공학부) ,  박용일 (전남대학교 화학공학부)

초록
AI-Helper 아이콘AI-Helper

광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을 갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을 띠는 활성산소를 생성하는 감광제가 필수적이다. 하지만 일반적인 감광제는 가시광선을 광원으로 사용하므로 이에 따른 부작용 및 치료효과의 한계가 존재한다. 이러한 이유로 가시광선 대신 근적외선을 광원으로 사용할 수 있는 업컨버전 나노입자가 질병진단 및 치료 분야에서 주목을 받고 있다. 업컨버전 나노입자는 세포 독성 및 광원에 의한 부작용이 적고, 광원의 조직 내 높은 투과율 및 낮은 자가형광 등의 장점을 가지고 있다. 근적외선 업컨버전을 광역학치료에 활용하기 위해서는 근적외선을 흡수하는 업컨버전 나노입자를 활성산소를 생성시키는 감광제와 결합시켜야 한다. 나노입자에 결합된 감광제는 나노입자로부터 빛 에너지를 흡수하고 이를 주위의 산소에 전이시켜 활성산소를 생성한다. 뿐만 아니라 질병의 치료 효율은 업컨버전 나노입자의 표면을 개질하거나 항암 약물의 첨가, 또는 광열치료와의 결합을 통해 더욱 향상시킬 수 있다. 본 총설은 업컨버전 나노입자를 이용한 광역학치료와 이를 이용한 질병 치료 효과 향상에 대한 최근의 연구결과를 바탕으로 서술하였다.

Abstract AI-Helper 아이콘AI-Helper

Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a vis...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 총설은 암의 효과적인 치료를 위한 광역학 치료법과 업컨버전 나노입자의 활용에 대해 기술하고자 한다. 근적외선을 효율적으로 이용하기 위해 업컨버전 나노입자와 감광제를 결합시키는 다양한 전략을 살펴보고, 광역학 치료법에 광열치료(photothermal therapy, PTT)와 화학 요법 등을 결합시켜 질병 치료효과를 향상시키기 위한 최근의 연구 결과도 함께 다루어 기술하고자 한다.
  • 본 총설에서는 업컨버전 나노입자를 이용하여 신체 내에서 국부적인 암의 치료가 가능한 광역학 치료의 효과를 증대시키는 방법으로 다양한 감광제와의 결합 및 다른 치료법과의 결합 등의 방법에 대해 기술하였다. 업컨버전 나노입자의 표면에 감광제를 도입하여 근적외선을 이용한 광역학치료를 가능하게 하며, 활성산소 생성효율을 높이기 위해 두 가지의 감광제를 함께 사용하는 접근방법도 제시되었다.
  • 본 총설은 암의 효과적인 치료를 위한 광역학 치료법과 업컨버전 나노입자의 활용에 대해 기술하고자 한다. 근적외선을 효율적으로 이용하기 위해 업컨버전 나노입자와 감광제를 결합시키는 다양한 전략을 살펴보고, 광역학 치료법에 광열치료(photothermal therapy, PTT)와 화학 요법 등을 결합시켜 질병 치료효과를 향상시키기 위한 최근의 연구 결과도 함께 다루어 기술하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
광역학치료란 무엇인가? 광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을 갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을 띠는 활성산소를 생성하는 감광제가 필수적이다.
감광제의 한계는 무엇인가? 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을 띠는 활성산소를 생성하는 감광제가 필수적이다. 하지만 일반적인 감광제는 가시광선을 광원으로 사용하므로 이에 따른 부작용 및 치료효과의 한계가 존재한다. 이러한 이유로 가시광선 대신 근적외선을 광원으로 사용할 수 있는 업컨버전 나노입자가 질병진단 및 치료 분야에서 주목을 받고 있다.
현재 항암 임상 치료법의 문제점은 무엇인가? 현재 다양한 항암 임상 치료법이 시도되고 있지만 심한 부작용도 함께 존재한다. 절제 등의 수술법은 암이 빠르게 전이될 위험이 있고, 방사선 치료는 방사능 중독과 이차적인 암의 발달을 야기시킬 수 있다. 화학요법(chemotherapy)은 약물의 낮은 선택성과 독성이 부작용으로 이어질 수 있다. 이러한 문제점이 있기 때문에 효과적이고 부작용이 적은 항암 치료법의 연구개발이 매우 중요하다[1,2].
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. R. Siegel, D. Naishadham, and A. Jemal, Cancer statistics, 2013, CA Cancer J. Clin., 63, 11-30 (2013). 

  2. G. Makin, Principles of chemotherapy, Paediatr. Child Health, 24, 161-165 (2014). 

  3. P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, and Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment, Theranostics, 6, 948-968 (2016). 

  4. T. J. Dougherty, G. B. Grindey, R. Fiel, K. R. Weishaupt, and D. G. Boyle, Photoradiation therapy. II. cure of animal tumors with hematoporphyrin and light, J. Natl. Cancer Inst., 55, 115-121 (1975). 

  5. N. L. Oleinick, R. L. Morris, and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 1, 1-21 (2002). 

  6. W. M. Sharman, C. M. Allen, and J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Meth. Enzymol., 319, 376-400 (2000). 

  7. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagnosis Photodyn. Ther., 1, 279-293 (2004). 

  8. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, Photodynamic therapy of cancer: an update, CA Cancer. J. Clin., 61, 250-281 (2011). 

  9. H. Zhang, Y. Shan, and L. Dong, A comparison of $TiO_2$ and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer, J. Biomed. Nanotechnol., 10, 1450-1457 (2014). 

  10. E. J. Hong, D. G. Choi, and M. S. Shim, Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials, Acta Pharm. Sin. B, 6, 297-307 (2016). 

  11. Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, Upconversion luminescence imaging of cells and small animals, Nat. Protoc., 8, 2033-2044 (2013). 

  12. S. S. Lucky, K. C. Soo, and Y. Zhang, Nanoparticles in photodynamic therapy, Chem. Rev., 115, 1990-2042 (2015). 

  13. M. R. Saboktakin and R. M. Tabatabaee, The novel polymeric systems for photodynamic therapy technique, Int. J. Biol. Macromol., 65, 398-414 (2014). 

  14. N. Teraphongphom, C. S. Kong, J. M. Warram, and E. L. Rosenthal, Specimen mapping in head and neck cancer using fluorescence imaging, Laryngoscope Investig. Otolaryngol., 2, 447-452 (2017). 

  15. F. Chen, H. Hong, Y. Zhang, H. F. Valdovinos, S. Shi, G. S. Kwon, C. P. Theuer, T. E. Barnhart, and W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles, ACS Nano, 7, 9027-9039 (2013). 

  16. P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, Lanthanide-doped $LiLuF_4$ upconversion nanoprobes for the detection of disease biomarkers, Angew. Chem. Int. Ed., 53, 1252-1257 (2014). 

  17. J. Lai, B. P. Shah, Y. Zhang, L. Yang, and K. B. Lee, Real-time monitoring of ATP-responsive drug release using mesoporous-silicacoated multicolor upconversion nanoparticles, ACS Nano, 9, 5234-5245 (2015). 

  18. S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy, ACS Nano, 9, 191-205 (2015). 

  19. L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers, Nat. Commun., 6, 6938 (2015). 

  20. R. Naccache, E. M. Rodriguez, N. Bogdan, F. Sanz-Rodriguez, C. Cruz Mdel, A. J. Fuente, F. Vetrone, D. Jaque, J. G. Sole, and J. A. Capobianco, Multifunctional nanomaterials and their applications in drug delivery and cancer therapy, Cancers, 4, 1067-1105 (2012). 

  21. S. Jin, L. Zhou, Z. Gu, G. Tian, L. Yan, W. Ren, W. Yin, X. Liu, X. Zhang, Z. Hu, and Y. Zhao, The evolution of gadolinium based contrast agents: From single-modality to multi-modality, Nanoscale, 5, 11910-11918 (2013). 

  22. M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy, Nanoscale, 6, 8274-8282 (2014). 

  23. N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles, Nano Lett., 11, 835-840 (2011). 

  24. A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals, J. Am. Chem. Soc., 133, 998-1006 (2011). 

  25. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968-973 (2011). 

  26. L. Liang, Y. Lu, R. Zhang, A. Care, T. A. Ortega, S. M. Deyev, Y. Qian, and A. V. Zvyagin, Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles, Acta Biomater., 51, 461-470 (2017). 

  27. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers, Nat. Med., 18, 1580-1585 (2012). 

  28. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of $Nd^{3+}$ -Sensitized nanoparticles, Adv. Mater., 26, 2831-2837 (2014). 

  29. H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, Upconverting near-infrared light through energy management in core-shell-shell nanoparticles, Angew. Chem. Int. Ed., 52, 13419-13423 (2013). 

  30. X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, Mechanistic investigation of photon upconversion in $Nd^{3+}$ -sensitized core-shell nanoparticles, J. Am. Chem. Soc., 135, 12608-12611 (2013). 

  31. D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, 808 nm driven $Nd^{3+}$ -sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging, Nanoscale, 7, 190-197 (2015). 

  32. Y. Guan, H. Lu, W. Li, Y. Zheng, Z. Jiang, J. Zou, and H. Gao, Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy, ACS Appl. Mater. Inter., 9, 26731-26739 (2017). 

  33. J. L. Vivero-Escoto, R. C. Huxford-Phillips, and W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications, Chem. Soc. Rev., 41, 2673-2685 (2012). 

  34. P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehm, and J. O. Durand, Silica-based nanoparticles for photodynamic therapy applications, Nanoscale, 2, 1083-1095 (2010). 

  35. P. Yang, S. Gai, and J. Lin, Functionalized mesoporous silica materials for controlled drug delivery, Chem. Soc. Rev., 41, 3679-3698 (2012). 

  36. H. Wang, X. Zhu, R. Han, X. Wang, L. Yang, and Y. Wang, Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles, Microporous Mesoporous Mater., 239, 78-85 (2017). 

  37. L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy, ACS Appl. Mater. Interfaces, 8, 11945-11953 (2016). 

  38. D. K. Chatterjee and Z. Yong, Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells, Nanomedicine, 3, 73-82 (2008). 

  39. W. Feng, X. Zhu, and F. Li, Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications, NPG Asia Mater., 5, 75 (2013). 

  40. C. Wang, L. Cheng, and Z. Liu, Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics, Theranostics, 3, 317-330 (2013). 

  41. X. F. Qiao, J. C. Zhou, J. W. Xiao, Y. F. Wang, L. D. Sun, and C. H. Yan, Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro, Nanoscale, 4, 4611-4623 (2012). 

  42. Z. Hou, Y. Zhang, K. Deng, Y. Chen, X. Li, X. Deng, Z. Cheng, H. Lian, C. Li, and J. Lin, UV-emitting upconversion-based $TiO_2$ photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway, ACS Nano, 9, 2584-2599 (2015). 

  43. Z. Yu, Q. Sun, W. Pan, N. Li, and B. Tang, A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy, ACS Nano, 9, 11064-11074 (2015). 

  44. D. Zheng, C. Pang, Y. Liu, and X. Wang, Shell-engineering of hollow g- $C_3N_4$ nanospheres via copolymerization for photocatalytic hydrogen evolution, Chem. Commun., 51, 9706-9709 (2015). 

  45. Y. Wang, F. Wang, Y. Zuo, X. Zhang, and L. F. Cui, Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine, Mater. Lett., 136, 271-273 (2014). 

  46. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, and S. Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy Environ. Sci., 5, 6717-6731 (2012). 

  47. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun., 3, 1139 (2012). 

  48. L. Ge, C. Han, and J. Liu, Novel visible light-induced g- $C_3N_4/Bi_2WO_6$ composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B, 108-109, 100-107 (2011). 

  49. Y. Wang, X. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51, 68-89 (2012). 

  50. X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, Fe-g- $C_3N_4$ -catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc., 131, 11658-11659 (2009). 

  51. L. Feng, F. He, Y. Dai, B. Liu, G. Yang, S. Gai, N. Niu, R. Lv, C. Li, and P. Yang, A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy, ACS Appl. Mater. Inter., 9, 12993-13008 (2017). 

  52. L. Feng, F. He, B. Liu, G. Yang, S. Gai, P. Yang, C. Li, Y. Dai, R. Lv, and J. Lin, g- $C_3N_4$ Coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging, Chem. Mater., 28, 7935-7946 (2016). 

  53. S. De Koker, R. Hoogenboom, and B. G. De Geest, Polymeric multilayer capsules for drug delivery, Chem. Soc. Rev., 41, 2867-2884 (2012). 

  54. T. L. Doane and C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy, Chem. Soc. Rev., 41, 2885-2911 (2012). 

  55. K. Raemdonck, K. Braeckmans, J. Demeester, and S. C. De Smedt, Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery, Chem. Soc. Rev., 43, 444-472 (2014). 

  56. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, and P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery, Chem. Soc. Rev., 42, 1147-1235 (2013). 

  57. A. V. Ambade, E. N. Savariar, and S. Thayumanavan, Dendrimeric micelles for controlled drug release and targeted delivery, Mol. Pharm., 2, 264-272 (2005). 

  58. W. D. Jang, D. Yim, and I. H. Hwang, Photofunctional hollow nanocapsules for biomedical applications, J. Mater. Chem. B, 2, 2202-2211 (2014). 

  59. V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev., 43, 744-764 (2014). 

  60. F. Tang, L. Li, and D. Chen, Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 1504-1534 (2012). 

  61. R. Anand, M. Malanga, I. Manet, F. Manoli, K. Tuza, A. Aykac, C. Ladaviere, E. Fenyvesi, A. Vargas Berenguel, R. Gref, and S. Monti, Citric acid- ${\gamma}$ -cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery, Photochem. Photobiol. Sci., 12, 1841-1854 (2013). 

  62. X. Liu, F. Fu, K. Xu, R. Zou, J. Yang, Q. Wang, Q. Liu, Z. Xiao, and J. Hu, Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells, J. Mater. Chem. B, 2, 5358-5367 (2014). 

  63. C. Dong, Z. Liu, S. Wang, B. Zheng, W. Guo, W. Yang, X. Gong, X. Wu, H. Wang, and J. Chang, A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy, ACS Appl. Mater. Inter., 8, 32688-32698 (2016). 

  64. R. Lv, P. Yang, F. He, S. Gai, G. Yang, Y. Dai, Z. Hou, and J. Lin, An imaging-guided platform for synergistic photodynamic/photothermal/chemo therapy with pH/temperature-responsive drug release, Biomaterials, 63, 115-127 (2015). 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로