$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.49 no.4, 2017년, pp.692 - 699  

Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ,  Park, Changhwan (FNC Technology, Co., Ltd.) ,  Lee, JinYong (FNC Technology, Co., Ltd.) ,  Lee, Byungchul (FNC Technology, Co., Ltd.)

Abstract AI-Helper 아이콘AI-Helper

The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This art...

주제어

참고문헌 (34)

  1. A.T. Wassel, A.F. Mills, D.C. Bugby, R.N. Oehlberg, Analysis of radionuclide retention in water pools, Nucl. Eng. Des. 90 (1985) 87-104. 

  2. S.M. Ghiaasiaan, G.F. Yao, A theoretical model for deposition of aerosols in rising spherical bubbles due to diffusion, convection, and inertia, Aerosol Sci. Technol. 26 (1997) 141-153. 

  3. C. Gabillet, C. Colin, J. Fabre, Experimental study of bubble injection in a turbulent boundary layer, Int. J. Multiphase Flow 28 (2002) 553-578. 

  4. T.S. Laker, S.M. Ghiaasiaan, Monte-Carlo simulation of aerosol transport in rising spherical bubbles with internal circulation, J. Aerosol Sci. 35 (2004) 473-488. 

  5. H. Allelein, A. Auvinen, J. Ball, S. Guentay, L.E. Herranz, A. Hidaka, A.V. Jones, M. Kissane, D. Powers, G. Weber, State-of-the-art report on nuclear aerosols, 2009, p. 5. OECD/NEA/CSNI; 2009. Report nr NEA/CSNI/R. 

  6. J.S. Hadamard, Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux, Comp. Rend. Acad. Sci. 152 (1911) 1735-1738 [in French]. 

  7. H.D. Mendelson, The prediction of bubble terminal velocities from wave theory, AIChE J. 13 (1967) 250-253. 

  8. R.M. Davies, G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 200 (1950) 375-390. 

  9. J.R. Grace, Shapes and velocities of bubbles rising in infinite liquids, Trans. Inst. Chem. Eng. 51 (1973) 116-120. 

  10. T. Tadaki, S. Maeda, On the shape and velocity of single air bubbles rising in various liquids, Kagaku Kogaku 25 (1961) 254-264 [in Japanese]. 

  11. M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J. 25 (1979) 843-855. 

  12. G. Bozzano, M. Dente, Shape and terminal velocity of single bubble motion: a novel approach, Comput. Chem. Eng. 25 (2001) 571-576. 

  13. A. Frumkin, V.G. Levich, On surfactants and interfacial motion, Zh. Fiz. Khim. 21 (1947) 1183-1204. 

  14. G.B. Wallis, The terminal speed of single drops or bubbles in an infinite medium, Int. J. Multiphase Flow 1 (1974) 491-511. 

  15. M. Jamialahmadi, C. Branch, H. Muller-Steinhagen, Terminal bubble rise velocity in liquids, Chem. Eng. Res. Des. 72 (1994) 119-122. 

  16. J.R. Grace, T. Wairegi, T.H. Nguyen, Shapes and velocities of single drops and bubbles moving freely through immiscible liquids, Trans. Inst. Chem. Eng. 54 (1976) 167-173. 

  17. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York (NY), 1978. 

  18. W. Rybczynski, On the translatory motion of a fluid sphere in a viscous medium, Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat., Ser. A (1911) 40-46. 

  19. R.L. Datta, D.H. Napier, D.M. Newitt, The properties and behaviour of gas bubbles formed at circular orifices, Trans. Inst. Chem. Eng. 28 (1950) 14-26. 

  20. W.L. Haberman, R.K. Morton, An experimental investigation of the drag and shape of air bubbles rising in various liquids, David Taylor Model Basin, Washington (WA), 1953. Report nr DTMB-802. 

  21. B. Rosenberg, The drag and shape of air bubbles moving in liquids, David W. Taylor Model Basin, 1950. Report nr 727. 

  22. T. Bryn, Speed of rise of air bubbles in liquids, David Taylor Model Basin, 1949. Report nr 132. 

  23. N.M. Aybers, A. Tapucu, Studies on the drag and shape of gas bubbles rising through a stagnant liquid, Warme Stoffubertragung 2 (1969) 171-177. 

  24. G. Houghton, P.D. Ritchie, J.A. Thomson, Velocity of rise of air bubbles in sea-water, and their types of motion, Chem. Eng. Sci. 7 (1957) 111-112. 

  25. A. Gorodetskaya, The rate of rise of bubbles in water and aqueous solutions at great Reynolds numbers, Russ. J. Phys. Chem. A 23 (1949) 71-78. 

  26. F.N. Peebles, H.J. Garber, Studies on the motion of gas bubbles in liquids, Chem. Eng. Prog. 49 (1953) 88-97. 

  27. P.H. Calderbank, D.S.L. Johnson, J. Loudon, Mechanics and mass transfer of single bubbles in free rise through some Newtonian and non-Newtonian liquids, Chem. Eng. Sci. 25 (1970) 235-256. 

  28. B. Sumner, F.K. Moore, Boundary layer separation on a liquid sphere, National Aeronautics and Space Administration, Washington, D.C, 1970. Report nr NASA CR-1669. 

  29. V.G. Levich, S. Technica, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962. 

  30. W.N. Bond, D.A. Newton, Bubbles, drops and stokes law, Philos. Mag 5 (1928) 794-800. 

  31. P. Savic, Circulation and distortion of liquid drops falling through a viscous medium, National Research Council of Canada, Ottawa, Ontario, Canada, 1953. Report nr MT-22. 

  32. R.E. Davis, A. Acrivos, The influence of surfactants on the creeping motion of bubbles, Chem. Eng. Sci. 21 (1966) 681-685. 

  33. R.M. Griffith, The effect of surfactants on the terminal velocity of drops and bubbles, Chem. Eng. Sci. 17 (1962) 1057-1070. 

  34. T.D. Taylor, A. Acrivos, On the deformation and drag of a falling viscous drop at low Reynolds number, J. Fluid Mech. 18 (1964) 466-476. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로