$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analysis of the Thermal Dome Effect from Global Solar Radiation Observed with a Modified Pyranometer 원문보기

Current optics and photonics, v.1 no.4, 2017년, pp.263 - 270  

Zo, Ilsung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ,  Jee, Joonbum (Weather Information Service Engine, Hankuk University of Foreign Studies) ,  Kim, Buyo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ,  Lee, Kyutae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)

Abstract AI-Helper 아이콘AI-Helper

Solar radiation data measured by pyranometers is of fundamental use in various fields. In the field of atmospheric optics, the measurement of solar energy must be precise, and the equipment needs to be maintained frequently. However, there seem to be many errors with the existing type of pyranometer...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • However, studies are still being conducted to solve the problems related to thermal offset, owing to the temperature difference between case and dome. In this study, intensive observations were performed and the TDE was analyzed using the Ji and Tsay (2010) method [20] and a modified pyranometer at Gangneung-Wonju National University, in collaboration with NASA. The analysis involved classifying the observation period into clear, cloudy, and rainy cases using observations of the total cloud amount.
  • In this study, intensive observations were performed and the TDE was analyzed using the Ji and Tsay (2010) method [20] and a modified pyranometer at Gangneung-Wonju National University, in collaboration with NASA. The analysis involved classifying the observation period into clear, cloudy, and rainy cases using observations of the total cloud amount. The difference between Tc and Td was large for clear days, leading to an increase of the TDE, and a value of 0.
  • The global solar radiation was observed using the modified pyranometer (PSP, EPPLEY), while the direct and diffuse solar radiation were observed at 1 minute intervals using the Kipp & Zonen instrument (direct: CHP1, diffuse: CMP 21, sun-tracker: 2AP).

이론/모형

  • Smith [11] directly attached a temperature sensor to the dome to observe Td, but because this can cause an error in the pyranometer’s measurements, the Ji and Tsay method was used in this study.
  • This study used a modified Eppley PSP (Precision Spectral Pyranometer) device, as illustrated in Fig. 1. The c and f values of the modified pyranometer required for Eq.
본문요약 정보가 도움이 되었나요?

참고문헌 (29)

  1. D. R. Myers, I. Reda, S. Wilcox, and A. Andreas, "Optical radiation measurements for photovoltaic applications: instrumentation uncertainty and performance," (International Symposium on Optical Science and Technology, SPIE's 49th, USA, 2004). 

  2. B. Viorel, Modeling solar radiation at the Earth surface (Springer, Verlag Berlin Heidelberg, Germany, 2008), pp. 1-25. 

  3. K. L. Coulson, Solar and terrestrial radiation, methods and measurements (Academic Press, New York, USA, 1975), pp. 11-19. 

  4. NREL, User's manual-1961-1990 national solar radiation data base, version 1.0. NSRDB-volume 1. NREL/TP-463-4859 (National Renewable Energy Laboratory, Colorado, USA, 1992), pp. 243. 

  5. W. J. H. Moll, "A thermopile for measuring radiation," in Proc. Phys. Soc. (London Sect. B, 1923), pp. 257-260. 

  6. V. Frank, M. Joseph, and S. Thomas, Solar and infrared radiation measurements (CRC Press, New York, USA, 2012), pp. 1-3. 

  7. H. Ohtake, K. Shimose, J. G. Silva, T. Takashima, T. Oozeki, and Y. Yamada, "Accuracy of the solar irradiance forecasts of the Japan meteorological Agency mesoscale model for the Kanto region, Japan," Sol. Energy 98, 138-152 (2013). 

  8. IEC, "IEC 60904-2: Photovoltaic device-Part2: requirements for reference solar cell," International Electrotechnical Commission, 3, rue de Varembe, Po Box 131, CH-1211, (IEC, Geneva, Switzerland, 2007). 

  9. WMO, "Guide to meteorological instrument and methods of observation, secretariat of the world meteorological organization: chapter 7 measurement of radiation," (WMO, Case Postale 2300, CH-1211 Geneva 2, Switzerland, 1997). 

  10. C. Frohlich, World radiometric reference: WMO/CIMO final report (WMO No. 490, 1977), pp. 97-100. 

  11. A. Smith, Prediction and measurement of thermal exchanges within pyranometers (MS Thesis. Virginia Polytechnic Institute, 1999), pp. 8. 

  12. JCGM (Joint Committee for Guides in Metrology), "Evaluation of Measurement Data - Guide to the expression of uncertainty in measurement," GUM 1995 with minor revisions. (Bureau International des Poids et Mesures, France, 2008). 

  13. I. Reda, D. Myers, and T. Stoffel, "Uncertainty estimate for the outdoor calibration of solar pyranometers: a meteorologist perspective," NCSLI (National Conference of Standards International) J. Meas. Sci. 3(4), 58-66 (2008). 

  14. S. Walker, A. Andreas, I. Reda, and D. A. McSparron, NBS measurement services: spectral irradiance calibrations (Washington, DC: U.S. Department of Commerce, National Bureau of Standards, 1987), pp. 20-22. 

  15. E. G. Dutton, J. J. Michalsky, T. Stoffel, B. W. Forgan, J. Hickey, D. W. Nelson, T. L. Alberta, and I. Reda, "Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset error," J. Atmos. Oceanic Technol. 18, 297-314 (2001). 

  16. S. Kato, T. P. Acjerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesley, F. Murcray, and J. Michalsky, "Uncertainties in modeled and measured clear-sky surface shortwave irradiance," J. Geophys. Earth Res. 32(22), 25881-25898 (1997). 

  17. A. J. Drummond and J. J. Roche, "Corrections to be applied to measurements made with appley (and other) spectral radiometers when used with schott colored glass filters," J. App. Meteorol. 4, 741-744 (1965). 

  18. M. Wild, A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta, and J. Morcrette, "The dispersion of radiative energy in the global climate system: GCM versus observational estimates," Clim. Dyn. 14, 853-869 (1998). 

  19. R. Philipona, "Underestimation of solar global and diffuse radiation measured at Earth's surface," J. Geophys. Res. 107(22), 4654 (2002). 

  20. Q. Ji and S. C. Tsay, "A novel nonintrusive method to resolve the thermal dome effect of pyranometers: instrumentation and observational basis," J. Geophys. Res. 115, (2010), doi: 10.1029/2009JD013483. 

  21. B. A. Carnicero, "Characterization of pyranometer thermal offset and correction of historical data," Master of Science thesis, Dept. of Mechanical Engineering (Virginia Polytechnic Institute and State University, USA, 2001), pp. 25. 

  22. Q. Ji, S. C. Tsay, K. M. Lau, R. A. Hansell, J. J. Butler, and J. W. Cooper, "A novel nonintrusive method to resolve the thermal dome effect of pyranometers: radiometric calibration and implications," J. Geophys. Res. 116, (2011), doi: 10.1029/2011JD016466. 

  23. M. Haeffelin, S. Kato, A. M. Smith, C. Ken Rutledge, T. P. Charlock, and J. Robert Mahan, "Determination of the thermal offset of the EPPLEY precision spectral pyranometer," Appl. Opt. 40(4), 472-484 (2001). 

  24. B. M. Hickey, Physical Oceanography (Ecology of the Southern California Bight. University of California Press, Berkeley, California, USA, 1993), pp. 19-70. 

  25. I. S. Zo, M. J. Jeong, K. T. Lee, J. B. Jee, and B. Y. Kim, "Temperature correction of solar radiation on clear sky using by modified pyranometer," J. Kor. Sol. Energy Soc. 35(1), 9-19 (2015) (in Korean with English Abstract). 

  26. Z. Wang, D. Liu, C. Xie, and J. Zhou, "An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer," J. Opt. Soc. Kor. 15(3), 209-215 (2011). 

  27. B. Y. Kim, J. B. Jee, I. S. Zo, and K. T. Lee, "Cloud cover retrieved from skyviewer: a validation with human observations," Asia-Pac. J. Atmos. Sci. 52(1), 1-10 (2016). 

  28. H. S. Koh, W. S. Shin, M. Y. Jeon, and B. S. Park, "The variation of radiation transmittance by the cw 1.07 ${\mu}m$ fiber laser and water aerosol interaction," J. Opt. Soc. Kor. 16(3), 191-195 (2012). 

  29. K. H. Lee, D. Muller, Y. M. Noh, S. K. Shin, and D. H. Shin, "Depolarization ratio retrievals using AERONET Sun photometer data," J. Opt. Soc. Kor. 14(3), 178-184 (2010). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로