$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색도움말
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

통합검색

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

논문 상세정보

흰쥐의 불용성 근위축에 당귀보혈탕이 미치는 영향과 그 기전에 관한 고찰

The Protective Effects of Dangguibohyul-tang (Dangguibuxuetang) against Disuse Muscle Atrophy in Rats

Abstract

Objectives Oxidative stress, in which antioxidant proteins and scavenger protection are overwhelmed by reactive oxygen species (ROS) production, is recognized as one of central causes of disuse muscle atrophy. In this study, the hypothesis that oral treatment with Dangguibohyul-tang (Dangguibuxuetang) could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The hindlimb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. The Rats in Dangguibohyul-tang treated group (DGBHT) (n=10) were orally administrated Dangguibohyul-tang water extract, and rats of Control group (n=10) were given with saline only. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both DGBHT and Control groups were assessed by hematoxylin and eosin staining. Results Dangguibohyul-tang water extract represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. Moreover, the treatment with Dangguibohyul-tang extract significantly enhanced the Cu/Zn-SOD activities in gastrocnemius muscle compared with Control group. Conclusions Thses results suggest that Dangguibohyul-tang has protective effects against immobilization-induced muscle atrophy by increasing the Cu/Zn-SOD activities in gastrocnemius muscle.

본문요약 

문제 정의
  • 본 연구에서는 불용성 근위축에 당귀보혈탕이 미치는 영향을 살펴보기 위하여 2주간 흰쥐에 오른쪽 뒷다리의 발목관절을 casting tape로 고정시키고 당귀보혈탕 물추출액를 경구 투여한 후 체중변화, 근육의 무게, 근섬유의 변화를 측정하였다.

    본 연구에서는 불용성 근위축에 당귀보혈탕이 미치는 영향을 살펴보기 위하여 2주간 흰쥐에 오른쪽 뒷다리의 발목관절을 casting tape로 고정시키고 당귀보혈탕 물추출액를 경구 투여한 후 체중변화, 근육의 무게, 근섬유의 변화를 측정하였다. 또한 산화적 손상(oxidative stress)과연관된 지표들의 변화를 관찰하였다.

본문요약 정보가 도움이 되었나요?

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
불용성 근위축
불용성 근위축이란?
근육의 불사용 혹은 기능저하에 의해 근육이 위축되는 것을 말한다

오랜 기간의 침상생활이나 물리적 운동부족 등에 의한 근육량의 손실과 기능의 저하는 삶의 질의 저하 뿐 아니라 노령 환자의 사망률을 증가시키는 원인이 되기도 한다1).불용성 근위축(disuse muscle atrophy)이란 근육의 불사용 혹은 기능저하에 의해 근육이 위축되는 것을 말한다2).오랜 기간 근육을 사용하지 않게 되면 전신적으로 최대산소소모량, 심박출량, 정맥환류, 심근수축력 및 혈액용적이 감소하며 국소적으로 근위축이 초래된다.

근위축
근위축이 초래되는 원인은 무엇인가?
오랜 기간 근육을 사용하지 않게 되면 전신적으로 최대산소소모량, 심박출량, 정맥환류, 심근수축력 및 혈액용적이 감소하며 국소적으로 근위축이 초래

불용성 근위축(disuse muscle atrophy)이란 근육의 불사용 혹은 기능저하에 의해 근육이 위축되는 것을 말한다2).오랜 기간 근육을 사용하지 않게 되면 전신적으로 최대산소소모량, 심박출량, 정맥환류, 심근수축력 및 혈액용적이 감소하며 국소적으로 근위축이 초래된다. 이러한 근위축은 주로 하지의 근육에서 뚜렷하게 나타나는 것으로 알려졌다3).

불용성 근위축
불용성 근위축이 주로 발생하는 위치는?
이러한 근위축은 주로 하지의 근육에서 뚜렷하게 나타나는 것으로 알려졌다

오랜 기간 근육을 사용하지 않게 되면 전신적으로 최대산소소모량, 심박출량, 정맥환류, 심근수축력 및 혈액용적이 감소하며 국소적으로 근위축이 초래된다. 이러한 근위축은 주로 하지의 근육에서 뚜렷하게 나타나는 것으로 알려졌다3). 이전의 동물실험 연구결과에 따르면, 불용성 근위축 손상은 주로 여러 근섬유 유형이 혼합된 근육에서 유발되는데, 예를 들어 slow와 fast myosin-heavy chain을 모두 가지고 있는 gastrocnemius에서 흔히 나타나는 것을 볼 수 있다4).

질의응답 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (35)

  1. 1. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10): 359-65. 
  2. 2. Wall BT, van Loon LJ. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev. 2013;71(4):195-208. 
  3. 3. Wall BT, Dirks ML, van Loon LJ. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev. 2013;12(4):898-906. 
  4. 4. Matsumoto Y, Nakano J, Oga S, Kataoka H, Honda Y, Sakamoto J, Okita M. The non-thermal effects of pulsed ultrasound irradiation on the development of disuse muscle atrophy in rat gastrocnemius muscle. Ultrasound Med Biol. 2014;40(7):1578-86. 
  5. 5. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA. Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab. 2012;303(1):31-9. 
  6. 6. Powers SK, Smuder AJ, Judge AR. Oxidative stress and disuse muscle atrophy: cause or consequence? Curr Opin Clin Nutr Metab Care. 2012;15(3):240-5. 
  7. 7. Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem. 2013;394(3):393-414. 
  8. 8. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta. 2010;1800(3):235-44. 
  9. 9. Powers SK. Can antioxidants protect against disuse muscle atrophy? Sports Med. 2014;44:155-65. 
  10. 10. Magne H, Savary-Auzeloux I, Remond D, Dardevet D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev. 2013; 26(2):149-65. 
  11. 11. Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM, Camerino GM, Ricciuti P, Brocca L, Pellegrino MA, Bottinelli R, Camerino DC. Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res. 2010;61(6):553-63. 
  12. 12. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36(6):377-93. 
  13. 13. Lee SI. Herbal Formula Science. Seoul: Young Lim Sa; 1990:172. 
  14. 14. Chiu PY, Leung HY, Siu AH, Poon MK, Dong TT, Tsim KW, Ko KM. Dang-Gui Buxue Tang protects against oxidant injury by enhancing cellular glutathione in H9c2 cells: role of glutathione synthesis and regeneration. Planta Med. 2007;73(2):134-41. 
  15. 15. Li YD, Ma YH, Zhao JX, Zhao XK. Protection of ultra-filtration extract from Danggui Buxue Decoction on oxidative damage in cardiomyocytes of neonatal rats and its mechanism. Chin J Integr Med. 2011;17(11):854-9. 
  16. 16. Gong AG, Li N, Lau KM, Lee PS, Yan L, Xu ML, et al, Calycosin orchestrates the functions of Danggui Buxue Tang, a Chinese herbal decoction composing of Astragali Radix and Angelica Sinensis Radix: An evaluation by using calycosin-knock out herbal extract. J Ethnopharmacol 2015;168:150-7. 
  17. 17. Yang Y, Chin A, Zhang L, Lu J, Wong RW. The role of traditional Chinese medicines in osteogenesis and angiogenesis. Phytother Res. 2014;28(1):1-8. 
  18. 18. Liu Y, Zhang HG, Li XH. A Chinese herbal decoction, Danggui Buxue Tang, improves chronic fatigue syndrome induced by food restriction and forced swimming in rats. Phytother Res. 2011;25(12):1825-32. 
  19. 19. Xu J, E XQ, Liu HY, Tian J, Yan JL. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury. Int J Clin Exp Pathol. 2015;8(6):6779-85. 
  20. 20. Lei T, Li H, Fang Z, Lin J, Wang S, Xiao L, Yang F, Liu X, Zhang J, Huang Z, Liao W. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen Res. 2014;9(3):260-7. 
  21. 21. Yeh TS, Huang CC, Chuang HL, Hsu MC. Angelica sinensis improves exercise performance and protects against physical fatigue in trained mice. Molecules. 2014;19(4):3926-39. 
  22. 22. Shahzad M, Shabbir A, Wojcikowski K, Wohlmuth H, Gobe GC. The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease. Curr Drug Targets. 2016;17(12):1331-40. 
  23. 23. Zhang L, Yang Y, Wang Y, Gao X. Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury. Pharmazie. 2011;66(2):144-50. 
  24. 24. Hong CY, Lo YC, Tan FC, Wei YH, Chen CF. Astragalus membranaceus and Polygonum multiflorum protect rat heart mitochondria against lipid peroxidation. Am J Chin Med. 1994;22(1):63-70. 
  25. 25. Yeh TS, Chuang HL, Huang WC, Chen YM, Huang CC, Hsu MC. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules. 2014;19(3):2793-807. 
  26. 26. Lu L, Wang DT, Shi Y, Yin Y, Wei LB, Zou YC, Huang B, Zhao Y, Wang M, Wan H, Li CJ, Diao JX. Astragalus polysaccharide improves muscle atrophy from dexamethasone-and peroxide-induced injury in vitro. Int J Biol Macromol. 2013;61:7-16. 
  27. 27. Udaka J, Terui T, Ohtsuki I, Marumo K, Ishiwata S, Kurihara S, Fukuda N. Depressed contractile performance and reduced fatigue resistance in single skinned fibers of soleus muscle after long-term disuse in rats. J Appl Physiol. 2011;111(4):1080-7. 
  28. 28. Shibaguchi T, Yamaguchi Y, Miyaji N, Yoshihara T, Naito H, Goto K, Ohmori D, Yoshioka T, Sugiura T. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats. Physiol Rep. 2016;4(15):1-8. 
  29. 29. Midrio M. The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol. 2006;98(1):1-21. 
  30. 30. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol. 2002; 92(4):1367-77. 
  31. 31. Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med. 1997;18(3):157-60. 
  32. 32. Fujita R, Tanaka Y, Saihara Y, Yamakita M, Ando D, Koyama K. Effect of molecular hydrogen saturated alkaline electrolyzed water on disuse muscle atrophy in gastrocnemius muscle. J Physiol Anthropol. 2011;30(5):195-201. 
  33. 33. Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med. 2003; 35(1):9-16. 
  34. 34. Dupont-Versteegden EE. Apoptosis in muscle atrophy: relevance to sarcopenia. Exp Gerontol. 2005;40(6):473-81. 
  35. 35. Luo Z, Zhong L, Han X, Wang H, Zhong J, Xuan Z. Astragalus membranaceus prevents daunorubicin-induced apoptosis of cultured neonatal cardiomyocytes: role of free radical effect of Astragalus membranaceus on daunorubicin cardiotoxicity. Phytother Res. 2009;23(6):761-7. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :
  • AccessON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

오픈액세스(OA) 유형

오픈액세스 학술지에 출판된 논문

DOI 인용 스타일

"" 핵심어 질의응답