최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기大韓建築學會論文集. Journal of the architectural institute of korea. 構造系, v.33 no.10 = no.348, 2017년, pp.69 - 77
라선중 (성균관대학교 대학원) , 신한솔 (성균관대학교 대학원) , 서원준 (성균관대학교 대학원) , 추한경 (성균관대학교 대학원) , 박철수 (성균관대학교 건설환경공학부)
The first principles-based simulation model, e.g. dynamic simulation, is influenced by model uncertainty, simplification of the reality, lack of information, a modeler's subjective assumptions, etc. Recently, a data-driven machine learning model has received a growing attention for simulation of exi...
Ahn, K. U., Kim, D. W., Kim, Y. J., & Park, C. S. (2016). Development of an Gaussian Process Model using a Data Filtering Method, Journal of the Architectural Institute of Korea: Planning & Design, 32(4), 97-105.
Ahn, K. U., Kim, Y. J., & Park, C. S. (2012). Issues on Dynamic Building Energy Performance Assessment in Design Process, Journal of the Architectural Institute of Korea: Planning & Design, 28(12), 361-369.
Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent neural networks, IEEE transactions on Neural Networks, 5(1), 54-65.
ASHRAE (2014). ASHRAE Guideline 14-2014: Measurement of Energy, Demand and Water Savings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA
Bottou, L., & Lin, C. J. (2007). Support vector machine solvers, Large scale kernel machines, 301-320.
Breiman, L. (1996). Bagging predictors, Machine learning, 24(2), 123-140.
DOE (2016a). EnergyPlus 8.6 Engineering Reference, U.S. Department of Energy, Washington, DC.
DOE (2016b). EnergyPlus 8.6 Input Output Reference, U.S. Department of Energy, Washington, DC.
Edwards, R. E., New, J., & Parker, L. E. (2012). Predicting future hourly residential electrical consumption: A machine learning case study, Energy and Buildings, 49, 591-603.
Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning, Proceedings of the International Conference on Neural Networks, 1930-1935.
Garg, A., & Tai, K. (2012). Review of genetic programming in modeling of machining processes, Proceedings of the International Conference on Modelling, Identification and Control(ICMIC), 653-658.
Jovanovic, R. Z., Sretenovic, A. A., & Zivkovic, B. D. (2015). Ensemble of various neural networks for prediction of heating energy consumption, Energy and Buildings, 94, 189-199.
Kim, Y. M., Ahn, K. U., & Park, C. S. (2016). Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings, Sustainability, 8(6), 543.
Louppe, G. (2014). Understanding random forests: From theory to practice, Doctoral dissertation, University of Liege, Liege, Belgium.
Park, C. S. (2006). Normative Assessment of Technical Building Performance, Journal of the Architectural Institute of Korea: Planning & Design, 22(11), 337-344.
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, MIT Press
Sane, H. S., Haugstetter, C., & Bortoff, S. A. (2006), Building HVAC control systems-role of controls and optimization, Proceedings of the American Control Conference, 6.
Suh, W. J., & Park, C. S. (2016). Real-time Optimal Control of Chiller using Genetic Programming, Journal of the Architectural Institute of Korea: Planning & Design, 32(6), 105-112.
Van Dijk, H., Spiekman, M., & de Wilde, P. (2005). A monthly method for calculating energy performance in the context of European building regulations, Building Simulation, 255-262.
Wang, H., & Hu, D. (2005). Comparison of SVM and LS-SVM for regression, Proceedings of the International Conference on Neural Networks and Brain, 1, 279-283.
Xavier-de-Souza, S., Suykens, J. A., Vandewalle, J., & Bolle, D. (2010). Coupled simulated annealing, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(2), 320-335.
Yao, X. (1999). Evolving artificial neural networks, Proceedings of the IEEE, 87(9), 1423-1447.
Zhang, Y., O'Neill, Z., Dong, B., & Augenbroe, G. (2015). Comparisons of inverse modeling approaches for predicting building energy performance, Building and Environment, 86, 177-190.
Zhao, H. X., & Magoules, F. (2012). A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews, 16(6), 3586-3592.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.