$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수소발생반응을 위한 Ni4Cr 나노 섬유 전기화학 촉매 합성 및 특성 분석
Synthesis and Characterization of Ni4Cr Nanofiber Electrocatalyst for Hydrogen Evolution Reaction 원문보기

한국표면공학회지 = Journal of the Korean institute of surface engineering, v.50 no.5, 2017년, pp.322 - 331  

이정훈 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  장명제 (한국과학기술연합대학원대학교 신소재공학부) ,  박유세 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  최승목 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  김양도 (부산대학교 재료공학과) ,  이규환 (한국기계연구원 부설 재료연구소 표면기술연구본부)

Abstract AI-Helper 아이콘AI-Helper

Hydrogen evolution reaction(HER) was studied over $Ni_4Cr$ nanofibers(NFs) prepared by electrospinning method and oxidation/reduction heat treatment for alkaline water electrolysis. The physicochemical and electrochemical properties such as average diameter, lattice parameter, HER activit...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 Ni에 Cr을 추가하여 Ni의 알칼리조건에서의 내 부식성 개선을 통해 향상된 내구성을 확보한 1차원 나노 구조 NiCr NF(nanofiber) 합금 촉매를 전기 방사와 산화 열처리, 환원 열처리를 통해 합성하였으며, 환원 열처리 온도에 따른NiCr NF 촉매의 구조적, 물리화학적 특성과 수소 발생 반응에 대한 전기 화학적 특성을 분석하여, NiCr NF 촉매의 수소 발생 반응을 위한 촉매로써의 적용 가능성을 평가하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
화석 연료를 대체할 에너지원에 요구되는 것은 무엇인가 1973년 1차 오일 쇼크와 1978년 2차 오일 쇼크 이후, 화석 연료 매장량의 한계와 더불어 화석 연료의 사용으로 발생된 이산화탄소로 인한 지구 온난화를 방지하기 위한 새로운 청정 에너지원에 대한 연구가 가속화 되었다. 화석 연료를 대체할 에너지원은 기술적으로 실현 가능해야 하고, 경제적이며, 에너지 생산 시 환경 오염 물질을 배출하지 않아야 한다. 많은 연구자들이 이에 따른 에너지원으로 바이오매스, 태양열, 풍력, 지열, 조력, 바이오가스 등을 제안하였고 현재까지 많은 연구를 진행해오고 있다.
물의 전기분해를 통한 수소 생산 방법 중 alkaline법의 장단점은 무엇인가 이로 인해 간단한 구성으로 고 순도의 수소를 대량으로 생산할 수 있는 물의 전기분해에 대한 연구가 많이 진행되고 있다[3, 4]. 물의 전기분해를 통한 수소 생산 방법 중 가장 기술적으로 성숙된 alkaline법은 낮은 전류밀도를 보여주며 내식성이 큰 전극이 필요하다는 단점이 있지만, 전극으로 상대적으로 저렴한 비 귀금속을 사용하고 장기간 사용할 수 있다는 장점으로 인해 상업적으로 가장 많이 사용되는 방법이다[5]. alkaline solution에서 전기 분해 반응이 진행되는 동안, anode와 cathode에서 다음과 같은 반응을 형성한다[6].
전 세계 수소 생산의 97%를 차지하는 화석연료를 개질하여 수소를 생산하는 방법의 단점은 무엇인가 1%를 차지한다. 가장 일반적인 수소생산 방법인 화석 연료 개질은 매장량이 제한된 화석 연료를 사용하며, 화석연료 개질 시 이산화탄소가 함께 발생한다는 단점이 있다. 이로 인해 간단한 구성으로 고 순도의 수소를 대량으로 생산할 수 있는 물의 전기분해에 대한 연구가 많이 진행되고 있다[3, 4].
질의응답 정보가 도움이 되었나요?

참고문헌 (66)

  1. Demirbas, A., Kabli, M., Alamoudi, R. H., Ahmad, W., & Basahel, A. (2017). Renewable energy resource facilities in the Kingdom of Saudi Arabia: Prospects, social and political challenges. Energy Sources, Part B: Economics, Planning, and Policy, 12(1), 8-16. 

  2. Schlapbach, L., & Zuttel, A. (2001). Hydrogenstorage materials for mobile applications. Nature, 414(6861), 353-358. 

  3. Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International journal of hydrogen energy, 33(15), 4013-4029. 

  4. Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International journal of hydrogen energy, 40(34), 11094-11111. 

  5. Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307-326. 

  6. Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 100(2), 410-426. 

  7. Durst, J., Siebel, A., Simon, C., Hasche, F., Herranz, J., & Gasteiger, H. A. (2014). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 7(7), 2255-2260. 

  8. Chen, W. F., Sasaki, K., Ma, C., Frenkel, A. I., Marinkovic, N., Muckerman, J. T., ... & Adzic, R. R. (2012). Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angewandte Chemie International Edition, 51(25), 6131-6135. 

  9. Morales-Guio, C. G., Stern, L. A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555-6569. 

  10. Hu, W. (2000). Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 25(2), 111-118. 

  11. Sheng, W., Myint, M., Chen, J. G., & Yan, Y. (2013). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 6(5), 1509-1512. 

  12. Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., & Bao, X. (2014). Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy & Environmental Science, 7(6), 1919-1923. 

  13. Chen, L., & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. Journal of The Electrochemical Society, 138(11), 3321-3328. 

  14. Jaksic, J. M., Vojnovic, M. V., & Krstajic, N. V. (2000). Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochimica Acta, 45(25), 4151-4158. 

  15. Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., ... & Dai, H. (2013). An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc, 135(23), 8452-8455. 

  16. Shervedani, R. K., & Lasia, A. (1997). Studies of the Hydrogen Evolution Reaction on Ni-P Electrodes. Journal of the Electrochemical Society, 144(2), 511-519. 

  17. Feng, L., Vrubel, H., Bensimon, M., & Hu, X. (2014). Easily-prepared dinickel phosphide (Ni 2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 16(13), 5917-5921. 

  18. Paseka, I. (1999). Influence of hydrogen absorption in amorphous Ni-P electrodes on double layer capacitance and charge transfer coefficient of hydrogen evolution reaction. Electrochimica acta, 44(25), 4551-4558. 

  19. Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., & Liu, Y. (2010). Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS applied materials & interfaces, 2(10), 2915-2923. 

  20. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part A, 60(4), 613-621. 

  21. Gorji, M., Jeddi, A., & Gharehaghaji, A. A. (2012). Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Journal of Applied Polymer Science, 125(5), 4135-4141. 

  22. Leung, W. W. F., & Hung, C. H. (2012). Skin effect in nanofiber filtration of submicron aerosols. Separation and purification technology, 92, 174-180. 

  23. Guo, P., Zhao, G., Chen, P., Lei, B., Jiang, L., Zhang, H., ... & Liu, M. (2014). Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance H2O2 vapor sensing. ACS nano, 8(4), 3402-3411. 

  24. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. 

  25. Ra, E. J., Raymundo-Pinero, E., Lee, Y. H., & Beguin, F. (2009). High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 47(13), 2984-2992. 

  26. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347. 

  27. Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World Scientific. 

  28. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703. 

  29. Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. 

  30. Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216. 

  31. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160. 

  32. Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of tissue engineering, 3(1), 2041731412443530. 

  33. Collins, G., Federici, J., Imura, Y., & Catalani, L. H. (2012). Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. Journal of Applied Physics, 111(4), 044701. 

  34. Schiffman, J. D., & Schauer, C. L. (2007). One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules, 8(9), 2665-2667. 

  35. Schiffman, J. D., & Schauer, C. L. (2008). A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews, 48(2), 317-352. 

  36. Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review. Journal of Materials Processing Technology, 167(2), 283-293. 

  37. Aruna, S. T., Balaji, L. S., Kumar, S. S., & Prakash, B. S. (2017). Electrospinning in solid oxide fuel cells-A review. Renewable and Sustainable Energy Reviews, 67, 673-682. 

  38. Li, X., Chen, Y., Huang, H., Mai, Y. W., & Zhou, L. (2016). Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review. Energy Storage Materials, 5, 58-92. 

  39. Haider, A., Haider, S., & Kang, I. K. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 

  40. Panthi, G., Park, M., Kim, H. Y., & Park, S. J. (2015). Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. Journal of Industrial and Engineering Chemistry, 24, 1-13. 

  41. Khoo, W., & Koh, C. T. (2015, October). A Review of Electrospinning Process and Microstructure Morphology Control. In International Conference on Mechanical and Manufacturing Engineering (ICME2015). 

  42. Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., ... & Ndesendo, V. M. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013. 

  43. Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6(88), 85495-85514. 

  44. Tomaszewski, P. E. (2002). Golden book of phase transitions. Wroclaw, 1, 1-123. 

  45. Buschow, K. H. J., Van Engen, P. G., & Jongebreur, R. (1983). Magneto-optical properties of metallic ferromagnetic materials. Journal of magnetism and magnetic materials, 38(1), 1-22. 

  46. Saalfeld, H. (1964). Strukturuntersuchungen im System Al2O3-Cr2O3. Zeitschrift fur Kristallographie-Crystalline Materials, 120(1-6), 342-348. 

  47. Kohlhaas, R., Dunner, P., & Schmitz, P. N. (1967). The temperature-dependance of the lattice parameters of iron, cobalt, and nickel in the high temperature range. Z Angew Physik, 23(4). 

  48. Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S. M., ... & Dionysiou, D. D. (2014). Visible light-sensitized S, N and C co-doped polymorphic TiO 2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental, 144, 614-621. 

  49. Campbell, J. (2003). Castings. Butterworth-Heinemann. 

  50. Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534. 

  51. Lee, S. H., Tekmen, C., & Sigmund, W. M. (2005). Three-point bending of electrospun TiO 2 nanofibers. Materials Science and Engineering: A, 398(1), 77-81. 

  52. Kang, W., Cheng, B., Li, Q., Zhuang, X., & Ren, Y. (2011). A new method for preparing alumina nanofibers by electrospinning technology. Textile Research Journal, 81(2), 148-155. 

  53. Ruiz-Rosas, R., Bedia, J., Rosas, J. M., Lallave, M., Loscertales, I. G., Rodriguez-Mirasol, J., & Cordero, T. (2012). Methanol decomposition on electrospun zirconia nanofibers. Catalysis today, 187(1), 77-87. 

  54. Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano letters, 3(8), 1167-1171. 

  55. Rahim, M. A., Hameed, R. A., & Khalil, M. W. (2004). Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of power sources, 134(2), 160-169. 

  56. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., & Nejati, M. (2009). Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelectrochemistry, 75(1), 1-8. 

  57. Ardakani, M. M., Taleat, Z., Beitollahi, H., Salavati-Niasari, M., Mirjalili, B. B. F., & Taghavinia, N. (2008). Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO 2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry, 624(1), 73-78. 

  58. Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J. B., & Browning, D. (2008). Power from marine sediment fuel cells: the influence of anode material. Journal of Applied Electrochemistry, 38(9), 1313. 

  59. Schultz, T., & Sundmacher, K. (2005). Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation. Journal of power sources, 145(2), 435-462. 

  60. Hu, J. M., Zhang, J. Q., & Cao, C. N. (2004). Oxygen evolution reaction on IrO 2-based DSA(R) type electrodes: kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy, 29(8), 791-797. 

  61. Mansfeld, F. (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corrosion Science, 47(12), 3178-3186. 

  62. Kapalka, A., Foti, G., & Comninellis, C. (2008). Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 10(4), 607-610. 

  63. Petrii, O. A., Nazmutdinov, R. R., Bronshtein, M. D., & Tsirlina, G. A. (2007). Life of the Tafel equation: Current understanding and prospects for the second century. Electrochimica acta, 52(11), 3493-3504. 

  64. Gileadi, E., & Kirowa-Eisner, E. (2005). Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corrosion science, 47(12), 3068-3085. 

  65. Bockris, J. O. M., & Potter, E. C. (1952). The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. The Journal of Chemical Physics, 20(4), 614-628. 

  66. Bates, M. K., Jia, Q., Ramaswamy, N., Allen, R. J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. The Journal of Physical Chemistry C, 119(10), 5467-5477. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로