$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석
Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.23 no.4, 2020년, pp.97 - 104  

이주영 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  김글한 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  양주찬 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  박유세 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  장명제 (한국기계연구원 부설 재료연구소 표면기술연구본부) ,  최승목 (한국기계연구원 부설 재료연구소 표면기술연구본부)

초록
AI-Helper 아이콘AI-Helper

전기 물 분해 기술 중 주요 과제 중 하나는 귀금속의 Ir과 Ru 기반의 촉매를 대체할 수 있는 고성능, 저비용의 산소 발생 반응 (OER) 촉매를 개발하는 것이다. 본 연구에서는 CoSO4Fe(NO3)3 수용액을 1차 가열 후 KNO3와 NaOH 추가 반응을 이용한 침전법을 이용하여 OER 촉매로 사용 가능한 역스피넬 구조의 약 44 nm 크기를 갖는 CoFe2O4 나노 입자를 합성하였다. CoFe2O4 나노 입자의 합성 시간을 조절하여 입자 및 결정립 크기를 제어하였다. CoFe2O4 나노 입자의 합성 시간이 6시간일 때, 높은 전도성과 전기 화학 표면적을 가졌다. 이 CoFe2O4 (6 h)는 전류 밀도 10 mA/㎠의 과전압 및 Tafel slope는 각각 395 mV 및 52 mV/dec으로 나타났다. 또한, 이 촉매는 10 mA/㎠에서 18시간 동안 우수한 내구성을 나타냈다.

Abstract AI-Helper 아이콘AI-Helper

One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure ...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 촉매의 대용량 합성이 가능한 방법인 침전법을 사용하여 추가 열처리 없이 CoFe2O4나노 입자를 제조하였으며, 합성 시간에 따라 OER에 대한 촉매 활성을 연구하였다.32-35) 합성시간이 6 시간 일 때, CoFe2O4 촉매는 10 mA/cm2의 전류 밀도에서 낮은 과전압을 가지며 가장 높은 OER 활성을 갖는 것을 확인하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. D. M. F. Santos, C. A. C. Sequeira and J. L. Figueiredo, 'Hydrogen production by alkaline water electrolysis', Quim. Nova, 36, 1176-1193 (2013). 

  2. M. M. Rashid, M. K. Al Mesfer, H. Naseem and M. Danish, 'Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis', Int. J. Eng. Technol., 4, 2249-8958 (2015). 

  3. E. Rios, J.-L. Gautier, G. Poillerat and P. Chartier, 'Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo 3 xO 4 system', Electrochim. Acta, 44, 1491-1497 (1998). 

  4. C.-C. Kuo, W.-J. Lan and C.-H. Chen, 'Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metalfree electrocatalysts for sensing hydrogen peroxide', Nanoscale, 6, 334-341 (2014). 

  5. T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges and K. B. Kokoh, 'IrO 2 Coated on RuO 2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting', J. Phys. Chem. C, 120, 2562-2573 (2016). 

  6. H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho and G. Wu, 'Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media', Nano Today, 11, 601-625 (2016). 

  7. J. Y. C. Chen, J. T. Miller, J. B. Gerken and S. S. Stahl, 'Inverse spinel NiFeAlO 4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion', Energy Environ. Sci., 7, 1382-1386 (2014). 

  8. M. O. Tolentino, J. V. Samperio, M. T. Velazquez, J. F. Moreno, L. L. Rojas and R. de G. G. Huerta, 'Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials', J Appl Electrochem, 48, 947-957 (2018). 

  9. J. Bejar, L. A. Contreras, J. L. Garcia, N. Arjona and L. G. Arriaga, 'An advanced three-dimensionally ordered macroporous NiCo 2 O 4 spinel as a bifunctional electrocatalyst for rechargeable Zn-air batteries', J. Mater. Chem. A, 8, 8554-8565 (2020). 

  10. H. Zhu, S. Zhang, Y. X. Huang, L. Wu and S. Sun, 'Monodisperse MxFe 3-x O 4 (M Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction', Nano Lett., 13, 2947-2951 (2013). 

  11. B. Cui, H. Lin, J.B. Li, J. Yang and J. Tao, 'Core-Ring Structured NiCo 2 O 4 Nanoplatelets: Synthesis, Characterizagtion, and Electrocatalytic Applications', Adv. Funct. Mater., 18, 1440-1447 (2008). 

  12. F. Cheng and J. Chen, 'Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts', Chem. Soc. Rev., 41, 2172-2192 (2012). 

  13. C. Si, Y. Zhang, C. Zhang, H. Gao, W. Ma, L. Lv and Z. Zhang, 'Mesoporous nanostructured spinel-type MFe 2 O 4 (M Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution', Electrochim. Acta, 245, 829-838 (2017). 

  14. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Hana and L. Guo, 'Facile synthesis of electrospun MFe 2 O 4 (M Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction', Nanoscale, 7, 8920-8930 (2015). 

  15. H. Zeng, P. M. Rice, S. X. Wang and S. Sun, 'ShapeControlled Synthesis and Shape-Induced Texture of MnFe 2 O 4 Nanoparticles', J. am. Chem. Soc., 126, 11458-11459 (2004). 

  16. R.N. Singh, J.P. Singh, H. N. Cong and P. Chartier, 'Effect of partial substitution of Cr on electrocatalytic properties ofMn 2 O 4 towards O 2 evolution in alkaline medium', Int. J. Hydrog. Energy, 31, 1372-1378 (2006). 

  17. X. Wu, Y. Niu, B. Feng, Y. Yu, X. Huang, C. Zhong, W. Hu and C. M. Li, 'Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe 2 O 4 /Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media', ACS Appl. Mater. Interfaces, 10, 20440-20447 (2018). 

  18. Z. Zhang, D. Zhou, S. Zou, X. Bao and X. He, 'One-pot synthesis of MnFe 2 O 4 /C by microwave sintering as anefficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions', J. Alloys Compd., 786, 565-567 (2019). 

  19. D. M. Fernandes, N. Silva, C. Pereira, C. Moura, J. M. C. S. Magalhaes, B. B. Baeza, I. R. Ramos, A. G. Ruiz, C. D. Matos, C. Freir, 'MnFe 2 O 4 @CNT-N as novel electrochemical nanosensor fordetermination of caffeine, acetaminophen and ascorbic acid', Sens. Actuators B Chem., 218, 128-136 (2015). 

  20. S. Khilari and D. Pradhan, 'MnFe 2 O 4 @nitrogen-doped reduced graphene oxide nanohybrid: an efficient bifunctional electrocatalyst for anodic hydrazine oxidation and cathodic oxygen reduction', Catal. Sci. Technol., 7, 5920-5931 (2017). 

  21. W. Bian, Z. Yang, P. Strasser, R. Yang, 'A CoFe 2 O 4 / graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution', J. Power Sources, 250, 196-203 (2014). 

  22. M. I. Godinho, M. A. Catarino, M.I. da Silva Pereira, M. H. Mendonc and F. M. Costa, 'Effect of the partial replacement of Fe by Ni and/or Mn on theelectrocatalytic activity for oxygen evolution of the CoFe 2 O 4 spineloxide electrod', Electrichim. Acta, 47, 4307-4314 (2002). 

  23. W. Yan, X. Cao, J. Tian, C. Jin, K. Ke and R. Yang, 'Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe 2 O 4 with enhanced electrocatalytic activities foroxygen reduction and evolution reactions', Carbon, 99, 195-202 (2016). 

  24. Xue-Feng L., Lin-Fei G., Jia-Wei W., Jun-Xi W., Pei-Qin L. and Gao-Ren L., 'Bimetal-Organic Framework Derived CoFe 2 O 4 /C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction', Adv. Mater., 29, 1604437 (2017) 

  25. W.Yan, W. Bian, C. Jin, J. H. Tian and R. Yang, 'An Efficient Bi-functional Electrocatalyst Based on Strongly CoupledCoFe 2 O 4 /Carbon Nanotubes Hybrid for Oxygen Reduction and Oxygen Evolution', Electrochim. Acta, 177, 65-72 (2015). 

  26. R.N. Singh, B. Lal and M. Malviya, 'Electrocatalytic activity of electrodeposited composite films of polypyrrole and CoFe 2 O 4 nanoparticles towards oxygen reduction reaction', Electrochim. Acta, 49, 4605-4612 (2004). 

  27. C. Mahala, M. D. Sharma and M. Basu, '2D Nanostructures of CoFe 2 O 4 and NiFe 2 O 4 : Efficient Oxygen Evolution Catalyst', Electrochim. Acta, 273, 462-473 (2018). 

  28. T. Zhang, Z. Li, L. Wang, Z. Zhang, S. Wang, 'Spinel CoFe 2 O 4 supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction', Int. J. Hydrog. Energy, 44, 1610-1619 (2019). 

  29. G. Zhum X. Li, Y. Liu, W. Zhu and X. She, 'Activating CoFe2O4electrocatalysts by trace Au for enhanced oxygen evolution activity', Appl. Surf. Sci., 478, 206-212 (2019). 

  30. X. Zhao, Y. Fu, J. Wang, Y. Xu, J. H. Tian and R. Yang, 'Ni-doped CoFe2O4Hollow Nanospheres as Efficient Bifunctional Catalysts', Electrochim. Acta, 201, 172-178 (2016). 

  31. K. M. Naik and S. Sampath, 'Two-step oxygen reduction on spinel NiFe2O4catalyst: Rechargeable,aqueous solution- and gel-based, Zn-air batteries', Electrochim. Acta, 292, 268-275 (2018). 

  32. W. Hu, Y. Wang, X. Hu, Y. Zhou and S. Chen, 'Threedimensional ordered microporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium', J. Mater. Chem., 22, 6010-6016 (2012). 

  33. S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhub and H. Fu, 'Co 3 O 4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting', Chem. Commun., 51, 8066-8069 (2015). 

  34. N. B. Halck, V. Petrykin, P. Krtil and J. Rossmeis, 'Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction', Phys. Chem. Chem. Phys., 16, 13682-13688 (2014). 

  35. S. T. Hunt, M. Milina, Z. Wang and Y. R. Leshkov, 'Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles', Energy Environ. Sci., 9, 3290-3301 (2016). 

  36. R. T. Olsson, M.A. S. Azizi Samir, G. S. Alvarez, L. Belova and V. Strom, 'Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose mano fibrils as templates', Nat. Nanotechnol., 5, 584-588 (2010) 

  37. R. Yang, S. He, J. Yi and Q. Hu, 'Nano-scale pore structure and fractal dimension of organic-rich WufengLongmaxi shale from Jiaoshiba area, Sichuan Basin:Investigations using FE-SEM, gas adsorption and helium pycnometry', Mar Pet Geol, 70, 27-45 (2016). 

  38. M. Peumans, B. V. Meerbeek, Y. Yoshida, P. Lambrechts and G. Vanherle, 'Porcelain veneers bonded to tooth structure: an ultra-morphological FE-SEM examination of the adhesive interface', Dent Mater, 15, 105-119 (1999). 

  39. M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J. B. Lerche, S. Patoux, C. Masquelier and J. M. Tarascon, 'In sity X-ray diffraction techniques as a powerful tool to study battery electrode materials', Electrochim. Acta, 47, 3137-3149 (2002). 

  40. M. R. Fitzsimmons, J. A. Eastman, M. M. Stach and G. Wallner, 'Structural characterization of nanometer-sized crystalline Pd by x-ray-diffraction techniques', Phys. Rev. B, 44, 2452-2460 (1991) 

  41. L. Wu, L. Shi, S. Zhou, J. Zhao, X. Miao and J. Guo, Direct Growth of CoFe2 Alloy Strongly Coupling and Oxygen-vacancy-rich CoFe 2 O 4 Porous Hollow Nanofibers: an Efficient Electrocatalyst for Oxygen Evolution Reaction', Energy Thchnol. 6, 2350?2357 (2018). 

  42. C. Zhang, Sa. Bhoyate, C. Zhao, P. K. Kahol, N. Kostoglou, C. Mitterer , S. J. Hinder, M. A. Baker, G. Constantinides, K. Polychronopoulou, C. Rebholz and R. K. Gupta, 'Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications', Catalysts, 9, 176 (2019). 

  43. K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. Peng, and Y. Zhu, 'High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction', ACS Nano, 12, 158?167 (2018). 

  44. C. Mahala, M. D. Sharma, and M. Basu, '2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst', Electrochimi. Acta, 273, 462?473 (2018). 

  45. J. S. Sagu, D. Mehta, and K. G. U. Wijayantha, 'Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media', Electrochem. Commun., 87, 1?4 (2018). 

  46. S. Sun, H. Li and Z. J. Xu, 'Impact of Surface Area in Evaluation of Catalyst Activity', Joule, 2, 1019-1027 (2018). 

  47. T. Shinagawa, Angel T. G. Esparza and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion', Sci. Rep., 5, 13801 (2015). 

  48. N. D. Leonard, S. Wagner, F. Luo, J. Steinberg, Wen Ju, N. Weidler, H. Wang, U. I. Kramm and P. Strasser, 'Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe-Nitrogen-Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors, ACS Catal., 8, 1640-1647 (2018). 

  49. R. Beugre, A. Dorval, L. L. Lavallee, M. Jafari, J. C. Byers, 'Local electrochemistry of nickel (oxy)hydroxide material gradients prepared using bipolar electrodeposition', Electrochim. Acta, 319, 331-338 (2019). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로