$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

배출량 목록에 따른 수도권 PM10 예보 정합도 및 국내외 기여도 분석
Impact of Emission Inventory Choices on PM10 Forecast Accuracy and Contributions in the Seoul Metropolitan Area 원문보기

한국대기환경학회지 = Journal of Korean Society for Atmospheric Environment, v.33 no.5, 2017년, pp.497 - 514  

배창한 (아주대학교 환경공학과) ,  김은혜 (아주대학교 환경공학과) ,  김병욱 (미국 조지아주 환경청) ,  김현철 (미국 국립해양대기청) ,  우정헌 (건국대학교 신기술융합학과) ,  문광주 (국립환경과학원 대기환경연구과) ,  신혜정 (국립환경과학원 대기환경연구과) ,  송인호 (국립환경과학원 대기환경연구과) ,  김순태 (아주대학교 환경공학과)

Abstract AI-Helper 아이콘AI-Helper

This study quantitatively analyzes the effects of emission inventory choices on the simulated particulate matter (PM) concentrations and the domestic/foreign contributions in the Seoul Metropolitan Area (SMA) with an air quality forecasting system. The forecasting system is composed of Weather Resea...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 총 질량농도 및 성분농도의 모사 정합도를 살펴보았다. 또한, BFM (Brute Force Method)를 이용하여 배출량 목록 선택에 따라 달라질 수 있는 수도권 PM10 농도에 대한 국내외 배출량의 기여도 범위를 추정하고자 하였다. 본 연구의 결과는 향후 PM10 예보 개선을 위한 예보용 배출량 입력자료 개선 및 비상저감 대응책 마련을 위한 대기질 예보모델의 기여도 결과 이용 시 기초자료가 될 수 있을 것으로 판단된다.
  • 본 연구에서는 PM10 예보 시스템에서 배출량 목록 이용에 따른 모사농도 및 국내외 배출량의 기여도 차이를 살펴보았다. 예보 모델에서 모사한 수도권 지역의 2014년 PM10 및 PM2.
  • 본 연구에서는 다양한 배출량 목록을 바탕으로 수행한 대기질 예보결과 평가와 아울러 PM10 구성 성분별 모사농도 분석을 통해 배출량 목록 선택에 따른 PM10 총 질량농도 및 성분농도의 모사 정합도를 살펴보았다. 또한, BFM (Brute Force Method)를 이용하여 배출량 목록 선택에 따라 달라질 수 있는 수도권 PM10 농도에 대한 국내외 배출량의 기여도 범위를 추정하고자 하였다.
  • 본 연구에서는 배출량 목록의 선택이 PM10 및 PM2.5 모사농도에 미치는 영향을 정량적으로 제시하였으며, 이를 통해 추후 PM10 예보 적중률 향상을 위해서 성분 모사농도의 정확도 개선을 위한 배출량 목록 개선이 필요함을 보였다. 또한, 향후 예보 모델의 적중률, 성분 모사 재현성 확보 및 모사오차를 고려한 기여도 보정 계수의 적용을 통해 단기 대응책 마련을 위한 기여도 분석 결과를 제시할 수 있을 것으로 기대한다.

가설 설정

  • 예를 들어, 생물학적 연소에서 많이 발생하는 유기탄소의 경우 Case 1이 상대적으로 다른 모사에 비해 높아 생물학적 연소에 의한 기여도가 다른 모사 결과에 기반한 기여도 평가에 비해 크게 나타날 수 있다. 둘째, primary PM10 배출량 개선의 중요성이다. Primary PM10으로 판단이 가능한 조대입자, 무기탄소, 기타 성분은 관측농도 기준 PM10의 64%, PM2.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
PM10 과소모사의 주요한 원인은 무엇인가? 국내에서 PM10 관련 예보 모사결과를 보면 예측농도는 관측농도에 비해 과소모사되는 경향이 나타난다 (MSIP, 2015; NIER, 2011a). 일반적으로 대기질 모델의 과소모사 이유로는 기상 입력자료 (Kim et al., 2017a; Jeong et al., 2007)와 배출량 자료 (Digar et al., 2011)가 주요한 원인으로 지목된다.
BFM 기법이란 무엇인가? 국내외 기여도 산정은 BFM 기법을 이용하였다. 이 기법은 기본 배출량 입력자료를 바탕으로 기본 모사를 수행한 결과와 일정 수준의 배출량이 감소된 수정 배출량 입력자료를 바탕으로 재모사된 결과를 이용하여 식 (1)과 같이 민감도 계수를 계산하는 방법이다 (Bartnicki, 1999). 식 (1)에서 Si는 배출원 i에 대한 민감도 계수, C0는 기본 모사농도, C i,x%는 배출원 i에 대해 배출량을 x% 변화시킨 후 재모사된 농도이며, ei,x%는 배출원 i에 대한 배출량 변화율 (x/100)을 의미한다.
현재 PM10 예보 등급은 어떻게 구분되는가? 환경부 및 지자체에서는 국민들이 야외 활동 시 인체에 유해한 PM10 (PM10, Particulate Matter of which diameter is 10 μm or less) 노출을 고려하여 일상 활동 여부를 결정하는 것을 돕고자 대기질 예보시스템을 운영하여 PM10 정보를 제공하고 있다 (MOE, 2012). 현재 PM10 예보는 당일 및 익일에 대하여 일평균 농도를 “좋음” (0~30 μg/m3), “보통” (31~80 μg/m3), “나쁨” (81~150 μg/m3), “매우 나쁨” (151 μg/m3 이상)의 네 가지 농도 등급을 제공하고 있다. 특히, 매우 나쁨 수준의 PM10이 예측된 경우에는 보다 능동적인 PM10 농도 감소를 위해 원인이 되는 배출원을 제어하는 비상저감 대책의 시행이 검토된다 (MOE, 2017).
질의응답 정보가 도움이 되었나요?

참고문헌 (34)

  1. Bae, C.H., H.C. Kim, B.U. Kim, and S. Kim (2015) Improvement of PM forecast using PSAT based customized emission inventory over Northeast Asia, 14th Annual CMAS Models-3 Users' Conference, October 5-7, Chapel Hill, NC. 

  2. Bae, C.H., B.U. Kim, H.C. Kim, C. You, and S. Kim (2016) Sensitivity of particulate matter in the Seoul Metropolitan Area to emission reduction from source sectors, 17th IUAPPA World Clean Air Congress and 9th CAA Better Air Quality Conference Clean Air for Cities Perspectives and Solutions. 

  3. Bae, C.H., C. You, B.U. Kim, H.C. Kim, and S. Kim (2017) $PM_{2.5}$ simulations for the Seoul Metropolitan Area: (III) application of the modeled and observed $PM_{2.5}$ ratio on the contribution estimation, Journal of Korean Society for Atmospheric Environment, 33(5), 445-457. (In Korean with English abstract). 

  4. Bartnicki, J. (1999) Computing source-receptor matrices with the EMEP Eulerian acid deposition Model, EMEP MSC-W Note, 5, 99. 

  5. Benjey, W., M. Houyoux, and J. Susick (2001) Implementation of the SMOKE emission data processor and SMOKE tool input data processor in Models-3, US EPA. 

  6. Boylan, J.W. and A.G. Russell (2006) PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmospheric Environment, 40, 4946-4959. 

  7. Byun, D.W. and K.L. Schere (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews, 59(2), 51-77. 

  8. Carlton, A.G., P.V. Bhave, S.L. Napelenok, E.O. Edney, G. Sarwar, R.W. Pinder, G.A. Pouliot, and M. Houyoux (2010) Model representation of secondary organic aerosol in CMAQv4. 7, Environmental Science and Technology, 44(22), 8553-8560. 

  9. Carter, W.P.L. (1999) Documentation of the SAPRC-99 chemical Mechanism for VOC reactivity assessment, Report to California Air Resources Board, Contracts 92-329 and 95-308. 

  10. Digar, A., D.S. Cohan, and M.L. Bell (2011) Uncertainties influencing health-based prioritization of ozone abatement strategies, Environmental Science and Technology, 45, 7761-7767. 

  11. Emery, C., Z. Liu, A.G. Russell, M.T. Odman, G. Yarwood, and N. Kumar (2016) Recommendations on statistics and benchmarks to assess photochemical model performance, Journal of the Air and Waste Management Association, http://dx.doi.org/10.1080/10962247.2016.1265027. 

  12. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, and C. Geron (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6(1), 107-173. 

  13. In, H.J. and Y.P. Kim (2010) Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: Possible missing emissions, Atmospheric Research, 98(2), 261-273. 

  14. Jeong, J.H., Y.K. Kim, Y.S. Moon, and M.K. Hwang (2007) Intercomparison of wind and air temperature fields of meteorological model for forecasting air quality in Seoul metropolitan area, Journal of Korean Society for Atmospheric Environment, 23(6), 640-652. (In Korean with English abstract) 

  15. Kim, B.U., C.H. Bae, H.C. Kim, E. Kim, and S. Kim (2017b) Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event, Atmospheric Environment, 162, 55-70, http://dx.doi.org/10.1016/j.atmosenv.2017.05.006. 

  16. Kim, H.C., E. Kim, C.H. Bae, J.H. Cho, B.U. Kim, and S. Kim (2017a) Regional contributions to particulate matter concentration in the Seoul Metropolitan Area, Korea: seasonal variation and sensitivity to meteorology and emissions inventory, Atmospheric Chemistry and Physics, 17, 10315-10332, https://doi.org/10.5194/acp-17-10315-2017. 

  17. Kim, H.C., S. Kim, B.U. Kim, C.S. Jin, S. Hong, R. Park, S.W. Son, C.H. Bae, M.A. Bae, C.K. Song, and A. Stein (2017d) Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea, Scientific Reports, 7. 

  18. Kim, S., C.H. Bae, H.C. Kim, and B.-U. Kim (2017c) $PM_{2.5}$ simulations in the Seoul Metropolitan Area: (I) model contributions of precursor emissions in the CAPSS emissions inventory, Journal of Korean Society for Atmospheric Environment, 33(2), 139-158. (In Korean with English abstract) 

  19. Kim, S., N. Moon, and D.W. Byun (2008) Korea emissions inventory processing using the US EPA's SMOKE system, Asian Journal of Atmospheric Environment, 2(1), 34-46. 

  20. Kurokawa, J., T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-Maenhout, T. Fukui, and H. Akimoto (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2, Atmospheric Chemistry and Physics, 13(21), 11019-11058. 

  21. Lee, D.-G., Y.-M. Lee, K. Jang, C. Yoo, K. Kang, J.-H. Lee, S. Jung, J. Park, S.-B. Lee, J. Han, J. Hong, and S. Lee (2011) Korean national emissions inventory system and 2007 air pollutant emissions, Asian Journal of Atmospheric Environment, 5(4), 278-291, doi:10.5572/ajae.2011.5.4.278. 

  22. Li, M., Q. Zhang, J. Kurokawa, J.-H. Woo, K.B. He, Z. Lu, T. Ohara, Y. Song, D.G. Streets, G.R. Carmichael, Y.F. Cheng, C.P. Hong, H. Huo, X.J. Jiang, S.C. Kang, F. Liu, H. Su, and B. Zheng (2017) MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects, Atmospheric Chemistry and Physics, 17(2), 935. 

  23. Lu, Z., Q. Zhang, and D.G. Streets (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010, Atmospheric Chemistry and Physics, 11, 9839-9864, doi:10.5194/acp-11-9839-2011. 

  24. NIER (2011a) Study on the construction of high resolution weather-atmosphere modeling for urban scale fine dust forecasting (III). (in Korean) 

  25. NIER (2011b) Evaluation of impacts of long-transport pollutants in Northeast Asia (II). (in Korean) 

  26. NIER (2014) Improve accuracy of ozone forecasting and improve emission processing model (I). (in Korean) 

  27. NIER (2015) National Institute of Environmental Research annual report. (in Korean) 

  28. NOAA (2005) https://madis.noaa.gov/ (accessed on Aug. 16, 2017). 

  29. MOE (2012) A Study on Improvement and Expansion of Urban Scale $PM_{2.5}$ Forecasting System. (in Korean) 

  30. MOE (2017) Emergency action plan for high-concentration PM in the Seoul metropolitan area, http://www.me.go.kr/home/web/board/read.do?menuId286&boardMasterId1&boardCategoryId39&boardId762290 (accessed on Aug. 23, 2017). (in Korean) 

  31. MSIP (2015) Development of Korean air quality simulation system for $PM_{2.5}$ forecasting. (in Korean) 

  32. Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X. Huang, W. Wang, and J.G. Powers (2008) A description of the advanced research WRF version 3, NCAR Tech. Note NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, CO, 125. 

  33. Tonnesen, G.S. and R.L. Dennis (2000) Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and $NO_x$ : 1. Local indicators of instantaneous odd oxygen production sensitivity, Journal of Geophysical Research: Atmospheres, 105(D7), 9213-9225. 

  34. Zhang, Q., D. Streets, G. Carmichael, K. He, H. Huo, A. Kannari, Z. Klimont, I. Park, S. Reddy, J. Fu, D. Chen, L. Duan, Y. Lei, L. Wang, and Z. Yao (2009) Asian emissions in 2006 for the NASA INTEX-B mission, Atmospheric Chemistry and Physics Discussions, 9(1), pp. 4081-4139. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로