$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

판정행렬분석을 통한 PET-MRI의 간암 진단성능 평가
Evaluation of the Liver Cancer Diagnosis Function of PET-MRI Based on Decision Matrix Analysis 원문보기

한국콘텐츠학회논문지 = The Journal of the Korea Contents Association, v.17 no.11, 2017년, pp.50 - 59  

김진의 (동신대학교 방사선학과) ,  김정수 (동남보건대학교 방사선과) ,  최남길 (동신대학교 방사선학과) ,  한재복 (동신대학교 방사선학과)

초록
AI-Helper 아이콘AI-Helper

최근 임상에서 활용하고 있는 일체형 PET-MRI의 간암 진단능력을 평가하기 위해 $2{\times}2$ 판정행렬을 이용하여 유용성을 평가하였다. 실험대상의 PET-MRI 검사 결과를 통해 간암 판정 여부 즉 비정상과 정상 판정을 받은 경우는 각각 98건, 51건 이었으며, 세포병리학적 결과가 양성과 음성 판정을 받은 경우는 각각 103건, 62건으로 나타났다. 이 중 두가지 검사에서 진양성의 경우는 95건, 위양성은 3건으로 나타났으며, 진음성은 62건, 위음성의 경우는 5건으로 분석되었다. 실험결과 PET-MRI 검사의 예민도는 95.00%, 특이도는 95.38%, 위음성률은 0.05%, 위양성률은 0.05%, 정확도는 95.15%로 분석되었다. 따라서 간암의 진단에 있어 수술 전 병기 결정이나 치료 후 재발 및 원격전이의 발견, 불분명한 원발 림프절 전이 등의 평가 등에 활용 가능성이 높을 것으로 판단되며, 특히 병리학적 검사와의 복합적 진단 및 추적검사를 통해 간암 진단을 위한 PET-MRI 임상적 유용성은 충분할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

To evaluate the capability of integrated PET-MRI, which has recently been utilized in the clinical practices, on the diagnosis of liver cancer, its utility was assessed by $2{\times}2$ decision matrix. The numbers of abnormal and normal decisions on the liver cancer were 98 and 51 cases, ...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • After reconstruction the scanned results through iterative method, an interest area for the lesion was set and the SUV (standard uptake value) measured for quantitative analysis. The data of PET-MRI was then analyzed.
  • The PET-MRI scan protocol for liver cancer as dictated by the nuclear medicine department of SNUH was applied, and thus the subjects underwent a torso scan to check the whole body. After the test an in-depth analysis of the liver was done with a liver dedication scan that followed immediately afterwards. At this point in time, Body TIM (total imaging matrix) coil was attached and VIBE (volumetric interpolated breath-hold examination)-Dixon (TR, repetition time; 3.
  • SNUH (seoul national university hospital) frequently uses PET-MRI to diagnose liver cancer but there are no specific data on the practical benefits of the diagnosis method. As such, this study compares the PET-MRI imaging results of liver cancer patients with pathological opinions and pathological examination results to evaluate the practical benefits of PET-MRI scans for liver cancer patients in a clinical setting.
  • For an analysis of the pathological result, the hospital’s comprehensive medical information system (EMR; electronic medical record, bestcare) was used to review the pathological examination opinion[Fig. 3].
  • The PET-MRI scan protocol for liver cancer as dictated by the nuclear medicine department of SNUH was applied, and thus the subjects underwent a torso scan to check the whole body. After the test an in-depth analysis of the liver was done with a liver dedication scan that followed immediately afterwards.
  • The diagnosis information of the patient thus acquired was entered into a 2 × 2 decision matrix to categorize them as TP (true positive), TN (true negative), FP (false positive) and FN (false negative).
  • PET-MRI brings the best of both worlds of PET that can diagnose liver cancer by detecting biochemical changes in the body through glucose metabolism, and MRI that can observe in high resolution soft tissue such as the liver. The integrated PET-MRI used in this study allows the artifact due to movement to be minimized as the subjects lie done to have the PET and MRI taken simultaneously. This also helps to shorten the test time which leads to better diagnosis accuracy.
  • This study analyzed a relatively simple 2 × 2 decision matrix for the experiment data for analysis.
  • This is why a prospective study using a larger patient group is needed. This study was conducted on patients and should be compared against objective data using a phantom, but such comparison was not applied, making the study limited. Therefore, many clinical experiments are needed in order to generalize the study findings.
  • False negative ratio is the percentage of cases where the diagnosis is given as negative even though there is liver cancer, while false positive ratio is the percentage of cases where the diagnosis is given as positive even though there is no liver cancer. Using the five indices concluded through the data analysis, the diagnosis function of the PET-MRI test can be evaluated. The experiment results show sensitivity to be 95.

대상 데이터

  • The integrated PET-MRI equipment BiographTM mMR 3T (SIEMENS, Munich) was used for the experiment[Fig. 1].
  • This study is limited in that it has a small number of subjects, 165 subjects in total. This leads to the small number of patients with a specific illness to be over the mean, leading to a relatively smaller size of the patient group.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Ahmedin Jemal, Freddie Bray, Melissa M. Jacques Ferlay, Elizabeth Ward, and David Forman, "Global cancer statistics," Ca cancer J Clin., Vol.61, pp.69-90, 2011. 

  2. K. W. Jung, Y. J. Won, C. M. Oh, H. J. Kong, D. H. Lee, and K. H. Lee, "Cancer statistics in korea: incidence, mortality, survival, and prevalence in 2014," Cancer research and Treatment, Vol.49, No.2, pp.292-305, 2017. 

  3. Ran Xu Zhu, Wai-Kay Seto, Ching-Lung Lai, Man-Fung Yuen, M. J. Daly, and R. E. Henly, "Epidemiology of hepatocellular carcinoma in the asia-pacific region," Gut Liver, Vol.10, No.3, pp.332-339, 2016. 

  4. S. K. Yoon and H. G. Chun, "Status of hepatocellular carcinoma in south korea," Chin Clin Oncol, Vol.2, No.4, p.39, 2013. 

  5. E. Y. Lee, T. T. Xuan Mai, Y. J. Chang, and M. R. Ki, "Trends of liver cancer and its major risk factors in korea," Epidemiol Health, Vol.37, p.e2015016, 2015. 

  6. Robert G. Gish, Richard S. Finn, and Jorge A. Marrero, "Extending survival with the use of targeted therapy in the treatment of hepatocellular carcinoma," Gastroenterol Hepatol, Vol.9, No.4, suppl.2, pp.1-24, 2013. 

  7. Josep M. Llovet, Maria Isabel Real, Xavier Montana, Ramon Planas, Susana Coll, John Aponte, Carmen Ayuso, Margarita Sala, Jordi Muchart, Ricard Sola, Joan Rodes, and Jordi Bruix, "Arterial embolisation or chemoembolisation versus symptomatic," Lancet, Vol.359, pp.1734-1739, 2002. 

  8. Gerald D. Dodd, Michael C. Soulen, Robert A. Kane, Tito Livraghi, William R. Lees, Yasuyuki Yamashita, Alison R. Gillams, Okkes I. Karahan, and H. C. Rhim, "Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough," Radiographics, Vol.20, pp.9-27, 2000. 

  9. D. G. Farmer, M. H. Rosove, A. Shaked, and R W. Busuttil, "Current treatment modalities for hepatocellular carcinoma," Ann Surg, Vol.219, pp.236-247, 1994. 

  10. F. F. Haddad, W. C. Chapman, J. K. Wright, T. K. Blair, and C. W. Pinson, "Clinical experience with cryosurgery for advanced hepatobiliary tumors," J Surg Res., Vol.75, pp.103-108, 1998. 

  11. Eric C. Ehman, Geoffrey B. Johnson, Javier E. Villanueva-Meyer, S. M. Cha, Andrew Palmera Leynes, Peder Eric Zufall Larson, and Thomas A. Hope, "PET/MRI: Where might it replace PET/CT?," J Magn Reson Imaging, doi:10.1002/jmri.25711, 2017. 

  12. Felix Nensa, Karsten Beiderwellen, Philipp Heusch, and Axel Wetter, "Clinical applications of PET/MRI: current status and future perspectives," Diagn Interv Radiol, Vol.20, No.5, pp.438-447, 2014. 

  13. W. Atkinson, C. Catana, J. S. Abramson, G. Arabasz, S. McDermott, O. Catalano, V. Muse, M. A. Blake, J. Barnes, M. Shelly, E. Hochberg, B. R. Rosen, and A. R. Guimaraes, "Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients," Abdom Radiol, Vol.41, pp.1338-4138, 2016. 

  14. C. M. Tempany, J. Jayender, T. Kapur, T. Kapur, R. Bueno, A. Golby, N. Agar, and F. A. Jolesz, "Multimodal imaging for improved diagnosis and treatment of cancers," Cancer, Vol.121, pp.817-827, 2015. 

  15. Toshio Wagai, "Studies on the foundation and development of diagnostic ultrasound," Proc Jpn Acad Ser B Phys Biol Sci., Vol.83, No.8, pp.256-265, 2007. 

  16. A. Samarin, M. Hullner, M. A. Queiroz, P. Stolzmann, I. A. Burger, G. Von Schulthess, and P. Veit Haibach, " $^{18}F$ -FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with $^{18}F$ -FDG-PET/CT," Nucl Med Commun., Vol.36, No.12, pp.1165-1173, 2015. 

  17. K. Beiderwellen, M. Huebner, P. Heusch, J. Grueneisen, V. Ruhlmann, F. Nensa, H. Kuehl, L. Umutlu, S. Rosenbaum-Krumme, and T. C. Lauenstein, "Whole-body [ $^{18}F$ ]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results," Eur Radiol., Vol.24, No.8, pp.2023-2030, 2014. 

  18. K. Beiderwellen, L. Geraldo, V. Ruhlmann, P. Heusch, B. Gomez, F. Nensa, L. Umutlu, and T. C. Lauenstein, "Accuracy of [ $^{18}F$ ]FDG PET/MRI for the detection of liver metastases," PLoS ONE, Vol.10, No.9, p.e0137285, 2015. 

  19. Philipp Heusch, Felix Nensa, Benedikt Schaarschmidt, Rupika Sivanesapillai, Karsten Beiderwellen, Benedikt Gomez, Jens Kohler, Henning Reis, Verena Ruhlmann, and Christian Buchbender, "Diagnostic accuracy of whole-body PET/MRI and whole-body PET/CT for TNM staging in oncolog," Eur J Nucl Med Mol Imaging, Vol.42, No.1, pp.42-48, 2015. 

  20. Ali Civelek, Anshuma Rana, Ashkan Malayeri, Justin Rodante, Amit Dey, Nehal Mehta, and David Bluemke, "PET-MRI derived 18F-FDG liver SUV metrics: effects of hepatic steatosis and comparison with PET-CT," J Nucl Med., Vol.58, No.1, p.455, 2017. 

  21. Kathy Schilling, Deepa Narayanan, Judith E. Kalinyak, Juliette The, Maria Victoria Velasquez, Simone Kahn, Matthew Saady, Ravinder Mahal, and Larraine Chrystal, "Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging," Eur J Nucl Med Mol Imaging, Vol.38, No.1, pp.23-36, 2011. 

  22. Ahmet Mert, Niyazi Kilic, Erdem Bilgili, and Aydin Akan, "Breast cancer detection with reduced feature set," Comput Math Methods Med., doi:10.1155/2015/265138, 2015. 

  23. A. Marcano-Cedeno, Paloma Chausa, Alejandro Garcia, Cesar Caceres, Josep M. Tormos, and Enrique J. Gomez, "Data mining applied to the cognitive rehabilitation of patients with acquired brain injury," Exp Sys Appl., Vol.40, No.4, pp.1054-1060, 2013. 

  24. Dushyant V. Sahani and Sanjeeva P. Kalva, "Imaging the liver," The Oncologist, Vol.9, No.4, pp.385-397, 2004. 

  25. Claudio Spick, Ken Herrmann, and Johannes Czernin, " $^{18}F$ -FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 Patients," J Nucl Med, Vol.57, No.3, pp.420-430, 2016. 

  26. Ruben Hernaez, Mariana Lazo, Susanne Bonekamp, Ihab Kamel, Frederick L. Brancati, Eliseo Guallar, and Jeanne M. Clark, "Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis," Hepatology, Vol.54, No.3, pp.1082-1090, 2011. 

  27. Eldad S. bialecki and Adrian M. Di Bisceglie, "Diagnosis of hepatocellular carcinoma," HPB(Oxford), Vol.7, No.1, pp.26-34, 2005. 

  28. A. Abbasi, A. R. Bhutto, N. Butt, and S. M. Munir, "Corelation of serum alpha fetoprotein and tumor size in hepatocellular carcinoma," J Pak Med Assoc, Vol.62, No.1, pp.33-36, 2012. 

  29. Marialuigina Fruscella, Antonio Ponzetto, Annalisa Crema, and Guido Carloni, "The extraordinary progress in very early cancer diagnosis and personalized therapy: the role of oncomarkers and nanotechnology," J Nanotech, doi:10.1155/2016/3020361, 2016. 

  30. Bing Bai, Quanzheng Li, and Richard M. Leahy, "MR guided PET image reconstruction," Semin Nucl Med., Vol.43, No.1, pp.30-44, 2014. 

  31. Andrew J. Vickers, "Decision analysis for the evaluation of diagnostic tests, prediction models and molecular markers," Am Stat., Vol.62, No.4, pp.314-320, 2008. 

  32. Peter R. Killeen, "Beyond statistical inference: A decision theory for science," Psychon Bull Rev., Vol.13, No.4, pp.549-562, 2006. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로