$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증
Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.34 no.6 pt.3, 2018년, pp.1383 - 1398  

장재철 (서울대학교 과학교육과) ,  박경애 (서울대학교 지구과학교육과) ,  양도철 (한국항공우주연구원 영상체계개발팀)

초록
AI-Helper 아이콘AI-Helper

해상풍은 복잡한 해양 현상을 이해하는 데 가장 기초 요소 중 하나이다. 1990년대 초부터 산란계를 활용하여 전세계 바람장 자료를 생산해왔지만, 낮은 해상도로 인해 해양 연구에 제한적으로 사용되었다. Synthetic Aperture Radar(SAR)는 이러한 한계점을 보완하여 고해상도의 바람장 자료 생산이 가능하다. KOMPSAT-5는 한반도 최초의 X-band SAR 탑재 인공위성으로 고해상도 해상풍 산출이 가능하다. 본 연구는 KOMPSAT-5 후방산란계수 자료를 활용하여 산출한 해상풍의 검증 결과를 최초로 제시하였다. 18장의 KOMPSAT-5 ES 모드 자료를 수집하여 해양 부이와의 일치점 데이터베이스를 생산하였다. 정확한 해상풍 산출을 위해 육지 화소, 스페클 잡음, 선박 화소를 제거하는 전처리 과정을 거쳤고, 해양 부이 실측 자료에 Liu-Katsaros-Businger (LKB) 모델을 통해 10-m 중성 바람으로 변환하여 기준 자료로 활용하였다. XMOD2를 활용하여 산출한 해상풍은 후방산란계수 산출식에 따라 $2.41-2.74m\;s^{-1}$평균 제곱근 오차를 보였다. 분석 결과 KOMPSAT-5 후방산란계수 자료를 활용하여 해상풍을 산출하는 경우, 대기 중력파, 파랑, 내부파를 포함한 해양 기상 환경과 레인지 모호성(range ambiguity), 입사각의 이산적 불연속적 분포를 포함한 영상 품질에 의한 잠재적 오차 요인이 존재함을 규명하였다.

Abstract AI-Helper 아이콘AI-Helper

Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal...

주제어

표/그림 (14)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • SAR 자료를 활용하여 해상풍을 산출하는 경우, NRCS와 입사각, 상대 풍향 정보만을 가지고 있기 때문에 직접적인 해상풍 산출이 불가능하다. 따라서 본 연구에서는 XMOD2로부터 계산된 NRCS와 관측된 NRCS의 차이를 최소로 만드는 풍속을 추정하였다.
  • 본 연구에서는 해양 영역을 관측한 SAR 자료의 정확한 정량적 분석을 위해 육지 화소, 스펙클 잡음, 선박 화소 제거를 포함한 전처리를 수행하였다. Fig.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
산란계 바람장 자료의 단점은 무엇인가요? , 2006). 하지만, 이러한 산란계 바람장 자료는 낮은 공간 해상도로 인해 연안에서의 정확도 감소 및 결측이 발생하고, 작은 규모의 해양 현상 분석이 불가능하다는 한계점을 보인다 (Tang et al., 2004; Rodriguez et al.
KOMPSAT-5 인공위성에 대해 설명하세요. KOMPSAT-5 인공위성은 2013년 8월 22일에 발사된 우리나라 최초의 X-band(9.66 GHz) SAR 탑재 인공위성으로, 고해상도, 표준, 광역 촬영 모드의 관측 모드(mode) 가 존재한다(Lee, 2010). 고해상도 촬영 모드는 1 m 공간 해상도의 자료로, High Resolution mode(HR), Enhanced High Resolution mode(EH), Ultra High Resolution mode (UH)로 분류되고, 표준 촬영 모드는 3 m 공간 해상도의 자료로, Standard mode(ST), Enhanced Standard mode(ES) 로 분류되며, 광역 촬영 모드는 20 m 공간 해상도의 자료로, Wide Swath mode(WS), Enhanced Wide Swath mode (EW)로 분류된다(SIIS, 2015).
전세계의 바람장 관측에 대한 현황은 무엇인가요? 1990년대 초부터 현재까지 전세계 연구기관에서는 European Remote Sensing-1/2(ERS-1/2), NASA Scatterometer(NSCAT), Quik Scatterometer(Quikscat), Advanced Scatteromter(ASCAT), Rapid Scatteromter (RapidScat)과 같은 산란계(scatterometer)를 운영하면서 약 25 km 공간 해상도의 바람장 자료를 산출하여 전세 계 바람장을 지속적으로 관측하고 있다(Ebuchi, 1999). 산란계 바람장 자료는 풍속은 2 m s–1, 풍향은 20° 안팎의 정확도를 보이며, 수치 예보 모델의 정확도를 높여 주는 입력 자료로 사용되었고, 태풍, 소용돌이(eddies), 대기-해양 상호작용을 포함한 해양 현상 기작을 이해하는데 활용되었다(Liu et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. Alpers, W. and W. Huang, 2011. On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface, IEEE Transactions on Geoscience and Remote Sensing, 49(3): 1114-1126. 

  2. Businger, J.A., J.C. Wyngaard, Y. Izumi, and E.F. Bradley, 1971. Flux-profile relationships in the atmospheric surface layer, Journal of the Atmospheric Sciences, 28(2): 181-189. 

  3. Cornillon, P. and K. Park, 2001. Warm core ring velocities inferred from NSCAT, Geophysical Research Letters, 28(4): 575-578. 

  4. Crisp, D.J., 2004. The state-of-the-art in ship detection in synthetic aperture radar imagery (No. DSTORR- 0272), Defence Science and Technology Organisation Salisbury (Australia) Info Sciences Lab, Fairbairn, Canberra, Australia. 

  5. Dyer, A., 1974. A review of flux-profile relationships, Boundary-Layer Meteorology, 7(3): 363-372. 

  6. Ebuchi, N., 1999. Statistical distribution of wind speeds and directions globally observed by NSCAT, Journal of Geophysical Research: Oceans, 104 (C5): 11393-11403. 

  7. Evans, D., C.L. Conrad, and F.M. Paul, 2003. Handbook of automated data quality control checks and procedures of the National Data Buoy Center, NOAA National Data Buoy Center, Hancock County, Mississippi, USA. 

  8. Franceschetti, G., M. Migliaccio, and D. Riccio, 1998. On ocean SAR raw signal simulation, IEEE Transactions on Geoscience and Remote Sensing, 36(1): 84-100. 

  9. Furevik, B.R. and E. Korsbakken, 2000. Comparison of derived wind speed from synthetic aperture radar and scatterometer during the ERS tandem phase, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 1113-1121. 

  10. Graf, J.E., W.Y. Tsi, and L. Jones, 1998. Overview of QuikSCAT mission-a quick deployment of a high resolution, wide swath scanning scatterometer for ocean wind measurement, Proc. of IEEE Southeastcon '98 'Engineering for a New Era', Orlando, FL, pp. 314-317. 

  11. Han, H., S.H. Hong, H.C. Kim, T.B. Chae, and H.J. Choi, 2017. A study of the feasibility of using KOMPSAT-5 SAR data to map sea ice in the Chukchi Sea in late summer, Remote Sensing Letters, 8(5): 468-477. 

  12. Harahsheh, H.A., 2016. Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery, Proc. of XXIII International Society for Photogrammetry and Remote Sensing Congress, Prague, Czech Republic, Jul. 12-19, vol. XLI-B8, pp. 1115-1121. 

  13. Hwang, J.I., S.H. Chae, D. Kim, and H.S. Jung, 2017. Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery, Applied Sciences, 7(9): 961. 

  14. Kare, J.T., 2001. Moving receive beam method and apparatus for synthetic aperture radar, U.S. Patent No. 6,175,326, Patent and Trademark Office, Washington D.C., USA,. 

  15. Kim, S.-W., D.-H. Kim, and Y.-K. Lee, 2018. Operational ship monitoring based on integrated analysis of KOMPSAT-5 SAR and AIS data, Korean Journal of Remote Sensing, 34(2): 3327-3338 (in Korean with English abstract). 

  16. Koch, W., 2004. Directional analysis of SAR images aiming at wind direction, IEEE Transactions on Geoscience and Remote Sensing, 42(4): 702-710. 

  17. Lee, J.S., 1986. Speckle Suppression and Analysis for Synthetic Aperture Radar Images, Optical Engineering, 25: 255636. 

  18. Lee, S.R., 2010. Overview of KOMPSAT-5 program, mission, and system, Proc. of 2010 International Geoscience and Remote Sensing Symposium, Honolulu, HI, Jul. 25-30, pp. 797-800. 

  19. Lehner, S., J. Horstmann, W. Koch, and W. Rosenthal, 1998. Mesoscale wind measurements using recalibrated ERS SAR images, Journal of Geophysical Research: Oceans, 103(C4): 7847-7856. 

  20. Li, X., W. Zheng, W.G. Pichel, C.Z. Zou, and P. Clemente-Colon, 2007. Coastal katabatic winds imaged by SAR, Geophysical Research Letters, 34(3). 

  21. Li, X., J.A. Zhang, X. Yang, W.G. Pichel, M. DeMaria, D. Long, and Z. Li, 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar, Bulletin of the American Meteorological Society, 94(2): 215-230. 

  22. Li, X.M. and S. Lehner, 2014. Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEMX data, IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2928-2939. 

  23. Liu, W.T., K.B. Katsaros, and J.A. Businger, 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface, Journal of the Atmospheric Sciences, 36(9): 1722-1735. 

  24. Liu, W. T. and W. Tang, 1996. Equivalent neutral wind, JPL Publication 96-17, Jet Propulsion Laboratory, Pasadena, CA, USA. 

  25. Liu, W.T., W. Tang, and P.S. Polito, 1998. NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction, Geophysical Research Letters, 25(6): 761-764. 

  26. Mastin, G.A., 1985. Adaptive filters for digital image noise smoothing: An evaluation, Computer Vision, Graphics, and Image Processing, 31(1): 103-121. 

  27. Park, K., P. Cornillon, and D.L. Codiga, 2006. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations, Journal of Geophysical Research: Oceans, 111(C3). 

  28. Park, K., J.-J. Park, J.-C. Jang, J.-H. Lee, S. Oh, and M. Lee, 2018. Multi-Spectral Ship Detection Using Optical, Hyperspectral, and Microwave SAR Remote Sensing Data in Coastal Regions, Sustainability, 10(11): 4064. 

  29. Paulson, C.A., 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, Journal of Applied Meteorology, 9(6): 857-861. 

  30. Rodriguez, E., R.W. Gaston, S.L. Durden, B. Stiles, M. Spencer, L. Veilleux, R. Hughes, D.E. Fernadez, S.C. Chan, S. Veleva, and R.S. Dunbar, 2009. A scatterometer for XOVWM, the extended ocean vector winds mission, Proc. of 2009 IEEE Radar Conference, Pasadena, CA, May 4-8, pp. 1-4. 

  31. SIIS, 2015. KOMPSAT-5 product specifications, Korea Aerospace Research Institute, Daejeon, South Korea. 

  32. Singh, P. and R. Shree, 2016. Analysis and effects of speckle noise in SAR images, Proc. of 2016 2nd International Conference on Advances in Computing, Communication, and Automation (ICACCA), Bareilly, India, Sep. 30-Oct. 1, pp. 1-5. 

  33. Smith, D.M., 1996. Speckle reduction and segmentation of Synthetic Aperture Radar images, International Journal of Remote Sensing, 17(11): 2043-2057. 

  34. Tang, W., W.T. Liu, and B.W. Stiles, 2004. Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1762-1769. 

  35. Thompson, D.R. and R.C. Beal, 1998. Mapping mesoscale and submesoscale wind fields using synthetic aperture radar, Proc. of 1998 International Geoscience and Remote Sensing Symposium, Seattle, WA, Jul. 6-10, vol. 3, pp. 1382-1384. 

  36. Vachon, P.W. and F.W. Dobson, 2000. Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model, Canadian Journal of Remote Sensing, 26(4): 306-313. 

  37. Villano, M., G. Krieger, and A. Moreira, 2014. Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation, IEEE Transactions on Geoscience and Remote Sensing, 52(7): 4462-4479. 

  38. Wang, C., M. Liao, and X. Li, 2008. Ship detection in SAR image based on the alpha-stable distribution, Sensors, 8(8): 4948-4960. 

  39. Xi, Y., H. Lang, Y. Tao, L. Huang, and Z. Pei, 2017. Four-component model-based decomposition for ship targets using polsar data, Remote Sensing, 9(6): 621. 

  40. Xie, T. and W. Perrie, 2010. Comparison of high winds retrieved from RADARSAT 2 SAR data with in situ buoy data and QuikScat wind vectors, Proc. of SeaSAR 2010 - The 3rd International Workshop on Advances in SAR Oceanography from Envisat and ERS, Frascati, Italy, Jan. 25-29, vol. 679. 

  41. Zhang, B., W. Perrie, P.W. Vachon, X. Li, W.G. Pichel, J. Guo, and Y. He, 2012. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements, IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4252-4261. 

  42. Zhang, B., X. Li, W. Perrie, and Y. He, 2015. Synergistic measurements of ocean winds and waves from SAR, Journal of Geophysical Research: Oceans, 120(9): 6164-6184. 

  43. Zhang, G., W. Perrie, X. Li, and J.A. Zhang, 2017. A Hurricane Morphology and Sea Surface Wind Vector Estimation Model Based on C-Band Cross-Polarization SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, 55(3): 1743-1751. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로