$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터
An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.29 no.6, 2018년, pp.627 - 634  

김지혜 (서울과학기술대학교 화공생명공학과) ,  구형준 (서울과학기술대학교 화공생명공학과)

Abstract AI-Helper 아이콘AI-Helper

Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabr...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 산화막 두께가 커패시터 거동에 미치는 영향을 보기 위하여, 산화/환원 과전압을 이용하여 EGaIn 산화막의 두께를 조절하고 그에 따른 커패시턴스값 변화를 살펴본다. 그리고 산화막이 제거된 EGaIn 전극에서 반복 충방전 과정 동안 산화막이 자발적 복구되는 독특한 자기복구(self-repair) 특성에 대하여 논의한다. 마지막으로, 전해질 농도의 영향을 살피기 위하여 전해질의 농도를 달리하여 CV 그래프와 커패시턴스값을 비교한다.
  • 그러므로 나노 절연막이 표면에 형성된 갈륨계 액체금속은 전하 전달 반응이 억제된 이상 분극 전극(ideally polarizable electrode)에 가까운 특성을 띄어 전기이중층 커패시터와 유사한 거동을 보일 수 있다29). 본 논문에서 우리는 두 개의 EGaIn 전극과 전해질을 기반으로 커패시터(이하 EGaIn 커패시터)를 구성하고, 여기서 나타나는 커패시터 거동 분석 결과를 발표한다. 먼저, cyclic voltammetry (CV) 실험을 통하여 EGaIn 커패시터가 전기이중층 커패시터의 충방전 거동 특성을 보임을 확인한다.
  • 본 논문에서는 액체금속 EGaIn 전극을 기반으로 EDLC 커패시터를 제작하였다. 표면에 형성되는 갈륨 산화막에 전기 이중층이 효과적으로 형성되어 커패시터 특성을 보이는 것을 확인하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
슈퍼커패시터의 특징과 사용되는 분야는? 대표적인 에너지 저장장치로는 배터리와 슈퍼 커패시터가 있다. 슈퍼커패시터는 충방전이 빠르고 짧은 시간에 높은 에너지를 발산시키기 때문에 고출력의 동력이 필요한 분야에 사용된다. 슈퍼커패시터는 전기이중층 커패시터(electric double-layer capacitor, EDLC)와 전기화학 반응을 동반한 유사커패시터 (pseudocapacitor) 그리고 두 매커니즘을 접목시킨 하이브리드 커패시터 등으로 분류된다.
EGaIn 커패시터의 전기화학 특성 분석을 위하여 가장 먼저 한 것은? 1(a)와 같은 장치를 구성하였다. 먼저, polydimethylsiloxane (PDMS) 로 사각 틀을 만들고, 바닥에 두 개의 구멍을 뚫어, 지름 500 μm의 타이곤 튜브를 연결한다. 두 개의 튜브에 각각 EGaIn (Sigma-Aldrich)을 주입하여 EGaIn 전극을 만들고 전해질을 채운다.
갈륨계 액체금속이 다양한 모양 구현이 가능한 이유는? 갈륨계 액체금속의 또 다른 중요한 특징은 표면에 수 나노미터 두께의 갈륨 산화막을 자발적으로 형성하는 것이다16-19). 표면장력이 높아 성형이 어려운 수은과 달리, 갈륨계 액체금속은 표면에 형성된 자연산 화막(native oxide)이 표면장력을 낮추어 주기 때문에 구형 외에 다양한 모양 구현이 가능하다20-27). 이 산화막은 밴드갭이 커서(Eg: ~5 eV28)) 전기적으로는 부도체이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (37)

  1. M. Varga, C. Ladd, S. Ma, J. Holbery, and G. Trsoter, "On-skin liquid metal inertial sensor", Lab on a Chip, Vol. 17, No. 19, 2017, pp. 3272-3278. 

  2. X. Shi, C. H. Cheng, Y. Zheng, and P. Wai, "An egain-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction", Journal of Micromechanics and Microengineering, Vol. 26, No. 10, 2016, p. 105020. 

  3. H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T. J. Ha, and A. Javey, "Highly deformable liquid-state heterojunction sensors", Nature Communications, Vol. 5, 2014, p. 5032. 

  4. J. B. Chossat, Y. L. Park, R. J. Wood, and V. Duchaine, "A soft strain sensor based on ionic and metal liquids", IEEE Sensors Journal, Vol. 13, No. 9, 2013, pp. 3405-3414. 

  5. Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing, and A. Javey, "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring", Advanced Materials, Vol. 29, No. 39, 2017, p. 1701985. 

  6. G. Li, X. Wu, and D. W. Lee, "A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability", Lab on a Chip, Vol. 16, No. 8, 2016, pp. 1366-1373. 

  7. A. Tabatabai, A. Fassler, C. Usiak and C. Majidi, "Liquidphase gallium-indium alloy electronics with microcontact printing", Langmuir, Vol. 29, No. 20, 2013, p. 6194. 

  8. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (egain): A liquid metal alloy for the formation of stable structures in microchannels at room temperature", Advanced Functional Materials, Vol. 18, No. 7, 2008, pp. 1097-1104. 

  9. T. Liu, P. Sen, and C. J. Kim, "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices", Journal of Microelectromechanical Systems, Vol. 21, No. 2, 2012, pp. 443-450. 

  10. D. Zrnic and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of the Less Common Metals, Vol. 18, No. 1, 1969, pp. 67-68. 

  11. C. Karcher, V. Kocourek, and D. Schulze, "Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop", International Scientific Colloquium, Modelling for Electromagnetic Processing, 2003, pp. 105-110. 

  12. J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in Aqueous Environment", ACS Applied Materials & Interfaces, Vol. 10, No. 20, 2018, pp. 17448-17454. 

  13. Y. Lu, Q. Hu, Y. Lin, D. B. Pacardo, C. Wang, W. Sun, F. S. Ligler, M. D. Dickey, and Z. Gu, "Transformable liquid-metal nanomedicine", Nature Communications, Vol. 6, 2015, p. 10066. 

  14. J. E. Chandler, H. H. Messer, and G. Ellender, "Cytotoxicity of gallium and indium ions compared with mercuric ion", Journal of Dental Research, Vol. 73, No. 9, 1994, pp. 1554-1559. 

  15. R. C. Chiechi, E. A. Weiss, M. D. Dickey, and G. M. Whitesides, "Eutectic gallium-indium (egain): A moldable liquid metal for electrical characterization of self-assembled monolayers", Angewandte Chemie International Edition, Vol. 47, No. 1, 2007, pp. 142-144. 

  16. A. J. Downs, "Chemistry of aluminium, gallium, indium and thallium", Vol. 1, Springer, the Netherlands, 1993. 

  17. J. Thelen, M. D. Dickey, and T. Ward, "A study of the production and reversible stability of egain liquid metal microspheres using flow focusing", Lab on a Chip, Vol. 12, No. 20, 2012, pp. 3961-3967. 

  18. Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, and E. Brown, "Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium", Physics of Fluids, Vol. 24, No. 6, 2012, p. 063101. 

  19. S. Holcomb, M. Brothers, A. Diebold, W. Thatcher, D. Mast, C. Tabor, and J. Heikenfeld, "Oxide-free actuation of gallium liquid metal alloys enabled by novel acidified siloxane oils", Langmuir, Vol. 32, No. 48, 2016, pp. 12656-12663. 

  20. Y. Tokuda, J. L. B. Moya, G. Memoli, T. Neate, D. R. Sahoo, S. Robinson, J. Pearson, M. Jones, and S. Subramanian, "Programmable liquid matter: 2d shape deformation of highly conductive liquid metals in a dynamic electric field", Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, ACM, 2017, p. 142. 

  21. S. Zhu, J. H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, and M. D. Dickey, "Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core", Advanced Functional Materials, Vol. 23, No. 18, 2013, pp. 2308-2314. 

  22. T. Hutter, W. A. C. Bauer, S. R. Elliott, and W. T. Huck, "Formation of spherical and non spherical eutectic gallium- indium liquid metal microdroplets in microfluidic channels at room temperature", Advanced Functional Materials, Vol. 22, No. 12, 2012, pp. 2624-2631. 

  23. A. Diebold, A. Watson, S. Holcomb, C. Tabor, D. Mast, M. Dickey, and J. Heikenfeld, "Electrowetting-actuated liquid metal for rf applications", Journal of Micromechanics and Microengineering, Vol. 27, No. 2, 2017, p. 025010. 

  24. A. Fassler and C. Majidi, "3d structures of liquid-phase gain alloy embedded in pdms with freeze casting", Lab on a Chip, Vol. 13, No. 22, 2013, pp. 4442-4450. 

  25. Y. Zheng, Z. Z. He, J. Yang, and J. Liu, "Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism", Scientific Reports, Vol. 4, 2014, p. 4588. 

  26. C. Ladd, J. H. So, J. Muth, and M. D. Dickey, "3d printing of free standing liquid metal microstructures", Advanced Materials, Vol. 25, No. 36, 2013, pp. 5081-5085. 

  27. J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, "Direct writing of gallium-indium alloy for stretchable electronics", Advanced Functional Materials, Vol. 24, No. 23, 2014, pp. 3501-3507. 

  28. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, "Atomic layer deposited gallium oxide buffer layer enables 1.2 v open circuit voltage in cuprous oxide solar cells", Advanced Materials, Vol. 26, No. 27, 2014, pp. 4704-4710. 

  29. J. So and H. J. Koo, "Study on the Electrochemical Characteristics of a EGaIn Liquid Metal Electrode for Supercapacitor Applications", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 2, 2016, pp. 176-181. 

  30. M. D. Stoller and R. S. Ruoff, "Best practice methods for determining an electrode material's performance for ultracapacitors", Energy & Environmental Science, Vol. 3, No. 9, 2010, pp. 1294-1301. 

  31. L. R. F. Allen J. Bard, "Electrochemical methods fundamentals and applications", Willey, USA, 2001. 

  32. J. H. So, H. J. Koo, M. D. Dickey, and O. D. Velev, "Ionic current rectification in soft matter diodes with liquid metal electrodes", Advanced Functional Materials, Vol. 22, No. 3, 2012, pp. 625-631. 

  33. H. J. Koo, J. H. So, M. D. Dickey, and O. D. Velev, "Towards all soft matter circuits: Prototypes of quasi liquid devices with memristor characteristics", Advanced Materials, Vol. 23, No. 31, 2011, pp. 3559-3564. 

  34. M. R. Khan, C. B. Eaker, E. F. Bowden, and M. D. Dickey, "Giant and switchable surface activity of liquid metal via surface oxidation", Proceedings of the National Academy of Sciences, Vol. 111, No. 39, 2014, pp. 14047-14051. 

  35. D. Membreno, L. Smith, K. S. Shin, C. O. Chui, and B. Dunn, "A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte", Translational Materials Research, Vol. 2, No. 1, 2015, p. 015001. 

  36. Y. Q. Jiang, Q. Zhou, and L. Lin, "Planar mems supercapacitor using carbon nanotube forests", 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009, pp. 587-590. 

  37. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, and H. Durou, "Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor", Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 1266-1269. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로