$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Investigating the underlying structure of particulate matter concentrations: a functional exploratory data analysis study using California monitoring data 원문보기

Communications for statistical applications and methods = 한국통계학회논문집, v.25 no.6, 2018년, pp.619 - 631  

Montoya, Eduardo L. (Department of Mathematics, California State University)

Abstract AI-Helper 아이콘AI-Helper

Functional data analysis continues to attract interest because advances in technology across many fields have increasingly permitted measurements to be made from continuous processes on a discretized scale. Particulate matter is among the most harmful air pollutants affecting public health and the e...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Many studies of PM10 utilize daily and monthly summary measures which are assumed to represent daily individual exposure to PM. In this article, we add to the literature by exploring the underlying data structure of the height or size variation and time variation of PM10 and its association with regimes of Pacific climate using functional data (FD) methodologies. FD methodologies allow us to explore the behavior of PM10 at any time t in the day.
  • This work presents an avenue for future research. Specifically, it motivates developing a functional data regression model that quantifies the association between the daily PM10 curves (functional response) with changes in several explanatory variables representing spatial location attributes (scalar covariates) and climate processes (functional covariates).
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. American Lung Association (2017). American lung association state of the air 2017, Chicago, IL. 

  2. Bridgman HA and Oliver JE (2006). The Global Climate System (1st ed), Cambridge University Press, Cambridge. 

  3. Burroughs WJ (2007). Climate Change: A Multidisciplinary Approach (2nd ed), Cambridge University Press, Cambridge. 

  4. Chow JC, Watson JG, Lowenthal DH, Solomon PA, Magliano KL, Ziman SD, and Richards LW (1992). PM10 source apportionment in California's San Joaquin Valley, Atmospheric Environment. Part A. General Topics, 26, 3335-3354. 

  5. Csavina J, Field J, Falix O, Corral-Avitia AY, Saez AE, and Betterton EA (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates, Science of The Total Environment, 487, 82-90. 

  6. Dawson JP, Bloomer BJ, Winner DA, and Weaver CP (2014). Understanding the meteorological drivers of US particulate matter concentrations in a changing climate, Bulletin of the American Meteorological Society, 95, 521-532. 

  7. EPA (2018). Criteria air pollutants, from: https://www.epa.gov/criteria-air-pollutants 

  8. Feng J, Liao H, and Li J (2016). The impact of monthly variation of the Pacific-North America (PNA) teleconnection pattern on wintertime surface-layer aerosol concentrations in the United States, Atmospheric Chemistry and Physics, 16, 4927-4943. 

  9. Ignaccolo R, Mateu J, and Giraldo R (2014). Kriging with external drift for functional data for air quality monitoring, Stochastic Environmental Research and Risk Assessment, 28, 1171-1186. 

  10. Jerez S, Jimenez-Guerrero P, Montavez JP, and Trigo RM (2013). Impact of the North Atlantic Oscillation on European aerosol ground levels through local processes: a seasonal model-based assessment using fixed anthropogenic emissions, Atmospheric Chemistry and Physics, 13, 11195-11207. 

  11. Jhun I, Coull BA, Schwartz J, Hubbell B, and Koutrakis P (2015). The impact of weather changes on air quality and health in the United States in 1994-2012, Environmental Research Letters, 10, 084009. 

  12. Karl TR and Knight RW (1998). Secular trends of precipitation amount, frequency, and intensity in the United States, Bulletin of the American Meteorological Society, 79, 231-241. 

  13. Klumpp A, Ansel W, and Klumpp G (2004). Urban Air Pollution, Bioindication and Environmental Awareness, Cuvillier Verlag, Gottingen. 

  14. Kokoszka P and Reimherr M (2017). Introduction to Functional Data Analysis (1st ed), Chapman and Hall, Florida. 

  15. Lin M, Fiore AM, Horowitz LW, Langford AO, Oltmans SJ, Tarasick D, and Rieder HE (2015). Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions, Nature Communications, 6, 7105. 

  16. Liu YC, Di P, Chen SH, and DaMassa J (2018). Relationships of rainy season precipitation and temperature to climate indices in California: long-term variability and extreme events, Journal of Climate, 31, 1921-1942. 

  17. Marron JS, Ramsay JO, Sangalli LM, and Srivastava A (2015). Functional data analysis of amplitude and phase variation, Statistical Science, 30, 468-484. 

  18. Montoya EL and Meiring W (2016). An F-type test for detecting departure from monotonicity in a functional linear model, Journal of Nonparametric Statistics, 28, 322-337. 

  19. Montoya EL, Ulloa N, and Miller V (2014). A simulation study comparing knot selection methods with equally spaced knots in a penalized regression spline, International Journal of Statistics and Probability, 3, 96-110. 

  20. Morlini I (2007). Searching for structure in measurements of air pollutant concentration, Environmetrics, 18, 823-840. 

  21. R Development Core Team (2017). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. 

  22. Ramsay JO and Silverman BW (2005). Functional Data Analysis (2nd ed), Springer, New York. 

  23. Ramsay JO, Wickham H, Graves S, and Hooker G (2017). fda: Functional Data Analysis, R package version 2.4.7. 

  24. Ranalli MG, Rocco G, Jona Lasinio G, Moroni B, Castellini S, Crocchianti S, and Cappelletti D (2016). Functional exploratory data analysis for high-resolution measurements of urban particulate matter, Biometrical Journal, 58, 1229-1247. 

  25. Schnute JT, Boers N, Haigh R, Grandin C, Johnson A,Wessel P, and Antonio F (2017). PBSmapping: Mapping Fisheries Data and Spatial Analysis Tools, R package version 0.8.0. 

  26. Shaadan N, Jemain AA, Latif MT, and Deni SM (2015). Anomaly detection and assessment of $PM_{10}$ functional data at several locations in the Klang Valley, Malaysia, Atmospheric Pollution Research, 6, 365-375. 

  27. Shang HL (2014). A survey of functional principal component analysis, AStA Advances in Statistical Analysis, 98, 121-142. 

  28. Silverman BW (1996). Smoothed functional principal components analysis by choice of norm, The Annals of Statistics, 24, 1-24. 

  29. Singh A and Palazoglu A (2012). Climatic variability and its influence on ozone and PM pollution in 6 non-attainment regions in the United States, Atmospheric Environment, 51, 212-224. 

  30. Srivastava A and Klassen EP (2016). Functional and Shape Data Analysis, Springer, New York. 

  31. Srivastava A, Wu W, Kurtek S, Klassen E, and Marron JS (2011). Registration of functional data using Fisher-Rao metric, from: arXiv preprint arXiv:1103.3817v2 

  32. Sun Y and Genton MG (2011). Functional boxplots, Journal of Computational and Graphical Statistics, 20, 316-334. 

  33. Tucker JD (2017). fdasrvf: Elastic Functional Data Analysis, R package version 1.8.2. 

  34. Wood SN (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models, Biometrics, 62, 1025-1036. 

  35. Wood SN (2017a). Generalized Additive Models: An Introduction with R, CRC press, New York. 

  36. Wood SN (2017b). mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, R package version 1.8-23. 

  37. Yu JY, Kao HY, Lee T, and Kim ST (2011). Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Nino and La Nina events, Theoretical and Applied Climatology, 103, 337-344. 

  38. Zhang Y andWang Y (2016). Climate-driven ground-level ozone extreme in the fall over the southeast United States. In Proceedings of the National Academy of Sciences, 113, 10025-10030. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로