$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System 원문보기

Journal of microbiology and biotechnology, v.28 no.1, 2018년, pp.95 - 104  

Bouassida, Mouna (Unite Enzymes et Bioconversion, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax) ,  Ghazala, Imen (Laboratoire d'amelioration des plantes et valorisation des agroressources, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax) ,  Ellouze-Chaabouni, Semia (Unite Enzymes et Bioconversion, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax) ,  Ghribi, Dhouha (Unite Enzymes et Bioconversion, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax)

Abstract AI-Helper 아이콘AI-Helper

Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmenta...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this work, we noted a good correlation between the blood agar lysis and the emulsification activity (Table 1). The isolates, which were positive in blood agar lysis, also gave a high emulsification property.
  • subtilis strain SPB1 by using a combination of nitrous acid and ultraviolet rays to induce mutation. This investigation aimed to develop a cost-effective and simple approach in order to increase the biosurfactant productivity. This work also describes the biosurfactant properties of the selected mutant under extreme environmental conditions, its biological activity, and its potential for industrial applications.
  • This investigation aimed to develop a cost-effective and simple approach in order to increase the biosurfactant productivity. This work also describes the biosurfactant properties of the selected mutant under extreme environmental conditions, its biological activity, and its potential for industrial applications.

가설 설정

  • Isolation of mutants, overproducing biosurfactant, with the blood agar plate test has been previously reported [32, 33]. In this study, we tested all the survivors for their hemolytic activity. As described by Beggs [34], the fewer the positive mutant cells, the more negative the mutant strains are in the survival cells.
본문요약 정보가 도움이 되었나요?

참고문헌 (57)

  1. Tabatabaee A, Mazaheri AM, Noohi AA, Sajadian VA. 2005. Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian J. Environ. Health Sci. Eng. 2: 6-12. 

  2. Tahzibi A, Kamal F, Mazaheri AM. 2004. Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran. Biomed. J. 8: 25-31. 

  3. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. 2012. Production and stability studies of the biosurfactant isolated from Nocardiopsis sp. Desalination 285: 198-204. 

  4. Afsharmanesh H, Ahmadzadeh M, Majdabadi A, Motamedi F, Behboudi K, Javan-Nikkhah M. 2013. Enhancement of biosurfactants and biofilm production after gamma irradiationinduced mutagenesis of Bacillus subtilis UTB1, a biocontrol agent of Aspergillus flavus. Arch. Phytopathol. Plant. Prot. 46: 1874-1884. 

  5. Abouseouda M, Yatagheneb A, Amranec A, Maachib R. 2010. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J. Hazard. Mater. 180: 131-136. 

  6. Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK. 2008. Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J. Colloid Interface Sci. 324: 172-176. 

  7. Pereira JFB, Gudina EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, et al. 2013. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111: 259-268. 

  8. Banat IM. 1995. Characterization of biosurfactants and their use in pollution removal - state of the art. Acta Biotechnol. 15: 251-267. 

  9. Mukherjee S, Das P, Sen R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24: 509-515. 

  10. Stanbury PF, Whitaker A, Hall SJ. 1995. Fermentation Economics in Principles of Fermentation Technology, pp. 331-341. 2nd Ed. Pergamon Press, Oxford. 

  11. Ghribi D, Zouari N, Jaoua S. 2004. Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by UV and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis. J. Appl. Microbiol. 97: 338-346. 

  12. Volff JN, Vandewiele D, Simonet JM, Decaris B. 1993. Ultraviolet light, mitomycin C and nitrous acid induce genetic instability in Streptomyces ambofaciens ATCC23877. Mutat. Res. 287: 141-156. 

  13. Vahed M, Motalebi E, Rigi G, Noghabi KA, Reza Soudi M, Sadeghi M, et al. 2013. Improving the chitinolytic activity of Bacillus pumilus SG2 by random mutagenesis. J. Microbiol. Biotechnol. 23: 1519-1528 

  14. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, et al. 2012. Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J. Biomed. Biotechnol. 2012: 373682. 

  15. Mnif I, Campistany GA, Leon CJ, Hammami I, Triki MA, Manresa A, et al. 2016. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifugal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res. 23: 6690-6699. 

  16. Ghribi D, Chaabouni ES. 2011. Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol. Res. Int. 2011: 653654. 

  17. Youssef NH, Duncana KE, Naglea DP, Savagea KN, Knappb RM, McInerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347. 

  18. Carrera P, Cosmina P, Grandi G. 1993. Method of producing surfactin with the use of mutant of Bacillus subtilis. US Patents No. 5227294. 

  19. Pate RM, Desai AJ. 1997. Surface active properties of rhamnolipids from Pseudomonas aeruginasa G53. Basic Microbiol. 37: 281-286. 

  20. Mnif I, Sahnoun R, Chaabouni SE, Ghribi D. 2013. Evaluation of B subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ. Sci. Pollut. Res. Int. 21: 851-861. 

  21. Luna JM, Rufino RD, Sarubbo L, Takaki GC. 2013. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf. B Biointerfaces 102: 202-209. 

  22. Luna JM, Sarubbo LA, Campos-Takaki GM. 2009. A new biosurfactant produced by Candida glabrata UCP1002: characteristics of stability and application in oil recovery. Braz. Arch. Biol. Technol. 52: 785-793. 

  23. Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, et al. 2008. Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem. 43: 912-917. 

  24. Tiquia SM, Tam NFY, Hodgkiss IJ. 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 93: 249-256. 

  25. Sekar S, Sivaprakasam S, Mahadevan S. 2009. Investigations on ultraviolet light and nitrous acid induced mutations of halotolerant bacterial strains for the treatment of tannery soak liquor. Int. Biodeterior. Biodegradation 63: 176-181. 

  26. Dong Y, Lin H, Wang H, Mo X, Fu K, Wen H. 2011. Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Minerals Eng. 24: 870-875. 

  27. Chen BM, Xu X P, H ou Z G, L i ZQ, Ruan WB. 2011. Identification and mutagenesis of a new isolated strain Bacillus sp B26 for producing (R)- ${\alpha}$ -hydroxyphenylacetic acid. Chin. J. Chem. Eng. 19: 636-643 

  28. Yang Y, Zhang S, Xu AL, Zou LH, Li L, Qiu GZ. 2010. UVinduced mutagenesis and bioleaching of Acidiphilium cryptum and Acidithiobacillus ferrooxidans. J. Cent. South Univ. 41: 393-399. 

  29. Queener SW, Lively DH. 1986. Screening and selection for strain improvement, pp. 155-169. In Demain AL, Solomon MA (eds.), Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC. 

  30. Azzouz H, Daoud F, Benfarhat-Touzri D, Tounsi S. 2014. Selection and characterization of Bacillus thuringiensis mutants over-producing d-endotoxins. J. Stored Prod. Res. 59: 82-87. 

  31. Kim HS, Cote JC, Frechette S, Chung YS. 1994. Isolation and characterisation of mutants of Bacillus thuringiensis. J. Appl. Bacteriol. 76: 234-239. 

  32. Mulligan CN, Cooper DG, Neufeld RJ. 1984. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. 62: 311-314. 

  33. Mulligan CN, Chow TYK, Gibbs BF. 1989. Enhanced biosurfactant production by a mutant Bacillus subtilis strain. Appl. Microbiol. Biotechnol. 31: 486-489. 

  34. Beggs CB. 2002. A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem. Photobiol. Sci. 6: 431-437. 

  35. Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl HG. 2004. In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J. Antimicrob. Chemother. 53: 230-239. 

  36. Carrillo PG, Mardaraz C, Pitta-Alvarez SJ, Giulietti AM. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84. 

  37. Lin SC, Lin KG, Lo CC, Lin YM. 1998. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb. Technol. 23: 267-273. 

  38. Makkar RS, Cameotra SS. 1997. Biosurfactant production by a thermophilic Bacillus subtilis strain. J. Ind. Microbiol. Biotechnol. 18: 37-42. 

  39. Plaza GA, Zjawiony I, Banat I. 2006. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. J. Pet. Sci. Eng. 50: 71-77. 

  40. Maneerat S, Phetrong K. 2007. Isolation of biosurfactantproducing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J. Sci. Technol. 29: 781-791. 

  41. Chen CY, Baker SC, Darton RC. 2007. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J. Microbiol. Methods 70: 503-510. 

  42. Toren A, Navon-Venezia S, Ron EZ, Rosenberg E. 2001. Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 67: 1102-1106. 

  43. Gong G, Zheng Z, Chen H, Yuan C, Wang P, Yao L, et al. 2009. Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol. Biotechnol. 47: 27-31. 

  44. Lotfabad T, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri H, et al. 2010. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf. B Biointerfaces. 81: 397-405. 

  45. Yoneda T, Miyota Y, Furuya K, Tsuzuki T. 2006. Production process of surfactin. US Patents No. 7011969. 

  46. Rodrigues L, Banat MB, Teixeira J, Oliveira R. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618 

  47. Varadavenkatesan T, Murty VR. 2013. Production of a lipopeptide biosurfactant by a novel Bacillus sp and its applicability to enhanced oil recovery. Microbiology 2013: 621519. 

  48. Ben Ayed H, Jridi M, Maalej H, Nasri M, Hmidet N. 2014. Characterization and stability of biosurfactant produced by Bacillus mojavensis A21 and its application in enhancing solubility of hydrocarbon. J. Chem. Technol. 89: 1007-1014. 

  49. Aparna A, Srinikethan G, Smitha H. 2012. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B Biointerfaces 95: 23-29. 

  50. Persson A, Osterberg E, Dostalek M. 1988. Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl. Microbiol. Biotechnol. 29: 1-4. 

  51. Wang G, Ji G, Tian J, Zhang H, Dong H, Yu L. 2011. Functional characterization of a biosurfactant-producing thermo-tolerant bacteria isolated from an oil reservoir. Pet. Sci. 8: 353-356. 

  52. Sarubbo LA, De Luna JMG, De Campos-Takaki M. 2006. Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electron. J. Biotechnol. 9: 400-406. 

  53. Bezza FA, Chirwa EMN. 2015. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J. 101: 168-178. 

  54. Mulligan CN, Yong RN, Gibbs BF. 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371-380. 

  55. Silva SN, Farias CB, Rufino RD, Luna JM, Sarubbo LA. 2010. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces 79: 174-183. 

  56. Zhang J, Xue Q, Gao H, Lai H, Wang P. 2016. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb. Cell Fact. 15: 168. 

  57. Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MM. 2014. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122: 140-148. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로