$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

항암제의 치료 효율성을 높이기 위한 다양한 자극 응답성 물질이 개질된 키토산 마이셀의 응용성 고찰
Application of Stimuli-responsive Chitosan Micelles for Improved Therapeutic Efficiency of Anticancer Agents 원문보기

공업화학 = Applied chemistry for engineering, v.29 no.2, 2018년, pp.147 - 154  

정경원 (순천대학교 공과대학 고분자공학과) ,  박준규 ((주)시지바이오) ,  나재운 (순천대학교 공과대학 고분자공학과)

초록
AI-Helper 아이콘AI-Helper

현재 항암제의 낮은 치료 효율과 부작용을 해결하기 위해 고분자 기반의 약물전달체의 연구가 활발하게 진행되고 있다. 기존의 고분자기반의 약물 전달체는 우수한 결과를 보이는 등 상당한 진전이 있었음에도 불구하고, 대부분 혈중에서 안정성이 감소하여 표적 부위에 도달하기 전에 약물이 방출될 뿐만 아니라 오랜 시간 동안에 약물을 방출함으로써 부작용 및 낮은 치료 효율을 초래한다는 문제점을 가지고 있다. 본 총론에서는 이러한 비효율적인 약물 방출의 문제점을 개선하기 위한 방법으로 독성이 없고 생체 적합한 천연 고분자 키토산에 자극 응답성 물질을 도입하여 혈중에서 안정성을 높이고 표적 부위에서 약물을 과다 방출하여 치료 효율을 극대화할 수 있는 방법을 제시하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Currently, to overcome low therapeutic efficiencies and side effects of anticancer agents, the study of drug carrier based on polymers have been consistently investigated. Although the traditional drug carrier based on polymers displayed an excellent result and significant progress, there has been a...

주제어

참고문헌 (71)

  1. W. Cao, Y. Gu, M. Meineck, and H. Xu, The combination of chemotherapy and radiotherapy towards more efficient drug delivery, Chem. Asian J., 9, 48-57 (2014). 

  2. Y. Xin, Q. Huang, J. Q. Tang, X. Y. Hou, P. Zhang, L. Z. Zhang, and G. Jiang, Nanoscale drug delivery for targeted chemotherapy, Cancer Lett., 379, 24-31 (2016). 

  3. O. Adeoye and H. Cabral-Marques, Cyclodextrin nanosystems in oral drug delivery: A mini review, Int. J. Pharm., 531, 521-531 (2017). 

  4. P. S. Glass and J. G. Reves, Drug delivery system to improve the perioperative administration of intravenous drugs: computer assisted continuous infusion (CACI), Anesth. Analg., 81, 665-667 (1995). 

  5. P. K. Paul, A. Treetong, and R. Suedee, Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system, Acta Pharm., 67, 149-168 (2017). 

  6. S. H. Yalkowsky, J. F. Krzyzaniak, and G. H. Ward, Formulation-related problems associated with intravenous drug delivery, J. Pharm. Sci., 87, 787-796 (1998). 

  7. Q. Wang, P. Liu, Y. Sun, H. Wu, X. Li, Y. Duan, and Z. Zhang, Pluronic-poly[alpha-(4-aminobutyl)-1-glycolic acid] polymeric micelle-like nanoparticles as carrier for drug delivery, J. Nanosci. Nanotechnol., 14, 4843-4850 (2014). 

  8. F. Ye, H. Guo, H. Zhang, and X. He, Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system, Acta Biomater., 6, 2212-2218 (2010). 

  9. T. C. Lin, K. H. Hung, C. H. Peng, J. H. Liu, L. C. Woung, C. Y. Tsai, S. J. Chen, Y. T. Chen, and C. C. Hsu, Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration, J. Chin. Med. Assoc., 78, 635-641 (2015). 

  10. C. Peptu, R. Rotaru, L. Ignat, A. C. Humelnicu, V. Harabagiu, C. A. Peptu, M. M. Leon, F. Mitu, E. Cojocaru, A. Boca, and B. I. Tamba, Nanotechnology approaches for pain therapy through transdermal drug delivery, Curr. Pharm. Des., 21, 6125-6139 (2015). 

  11. J. Zhong, Nanotechnology for drug delivery: Part II, Curr. Pharm. Des., 21, 4129-4130 (2015). 

  12. M. Basha, Nanotechnology as a promising strategy for anticancer drug delivery, Curr Drug Deliv., 14, 1-13 (2017). 

  13. M. L. Cuestas, Therapy of chronic hepatitis C in the era of nanotechnology: Drug delivery systems and liver targeting, Mini Rev. Med. Chem., 17, 295-304 (2017). 

  14. B. N. Ho, C. M. Pfeffer, and A. T. K. Singh, Update on nanotechnology-based drug delivery systems in cancer treatment, Anticancer Res., 37, 5975-5981 (2017). 

  15. Z. He, X. Wan, A. Schulz, H. Bludau, M. A. Dobrovolskaia, S. T. Stern, S. A. Montgomery, H. Yuan, Z. Li, D. Alakhova, M. Sokolsky, D. B. Darr, C. M. Perou, R. Jordan, R. Luxenhofer, and A. V. Kabanov, A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity, Biomaterials, 101, 296-309 (2016). 

  16. Y. Zhang, L. Chen, J. Ding, K. Shen, M. Yang, C. Xiao, X. Zhuang, and X. Chen, Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy, J. Control. Release, 213, e135-136 (2015). 

  17. W. Zhuang, B. Ma, G. Liu, X. Chen, and Y. Wang, A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy, Regen. Biomater., 5, 1-8 (2018). 

  18. D. Kim, E. S. Lee, K. T. Oh, Z. G. Gao, and Y. H. Bae, Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH, Small, 4, 2043-2050 (2008). 

  19. H. Park, W. Park, and K. Na, Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer, Biomaterials, 35, 7963-7969 (2014). 

  20. M. W. Saif, N. A. Podoltsev, M. S. Rubin, J. A. Figueroa, M. Y. Lee, J. Kwon, E. Rowen, J. Yu, and R. O. Kerr, Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer, Cancer Invest., 28, 186-194 (2010). 

  21. F. Barahuie, D. Dorniani, B. Saifullah, S. Gothai, M. Z. Hussein, A. K. Pandurangan, P. Arulselvan, and M. E. Norhaizan, Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system, Int. J. Nanomed., 12, 2361-2372 (2017). 

  22. P. R. Kamath and D. Sunil, Nano-chitosan particles in anticancer drug delivery: An up-to-date review, Mini Rev. Med. Chem., 17, 1457-1487 (2017). 

  23. J. Y. Lee, U. Termsarasab, M. Y. Lee, D. H. Kim, S. Y. Lee, J. S. Kim, H. J. Cho, and D. D. Kim, Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery, Acta Biomater., 57, 262-273 (2017). 

  24. A. Ali and S. Ahmed, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 109, 273-286 (2018). 

  25. K. Dua, M. Bebawy, R. Awasthi, R.K. Tekade, M. Tekade, G. Gupta, T. De Jesus Andreoli Pinto, P.M. Hansbro, Chitosan and its derivatives in nanocarrier based pulmonary drug delivery systems, Pharm Nanotechnol., 5(4), 243-249 (2017). 

  26. K. Bowman and K. W. Leong, Chitosan nanoparticles for oral drug and gene delivery, Int. J. Nanomedicine, 1, 117-128 (2006). 

  27. G. Huang, Y. Liu, and L. Chen, Chitosan and its derivatives as vehicles for drug delivery, Drug deliv., 24, 108-113 (2017). 

  28. S. Jana, N. Maji, A. K. Nayak, K. K. Sen, and S. K. Basu, Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery, Carbohydr. Polym., 98, 870-876 (2013). 

  29. H. Lu, Y. Dai, L. Lv, and H. Zhao, Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis, PloS One, 9, e84703 (2014). 

  30. X. Bai, Z. Bao, S. Bi, Y. Li, X. Yu, S. Hu, M. Tian, X. Zhang, X. Cheng, X. Chen, Chitosan-based thermo/pH double sensitive hydrogel for controlled drug delivery, Macromol. Biosci., 18, 1700305 (2018). 

  31. W. C. Lin, D. G. Yu, and M. C. Yang, pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties, Colloids Surf. B, 44, 143-151 (2005). 

  32. M. Wang, H. Hu, Y. Sun, L. Qiu, J. Zhang, G. Guan, X. Zhao, M. Qiao, L. Cheng, L. Cheng, and D. Chen, A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting, Biomaterials, 34, 10120-10132 (2013). 

  33. X. Cui, X. Guan, S. Zhong, J. Chen, H. Zhu, Z. Li, F. Xu, P. Chen, and H. Wang, Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release, Ultrason. Sonochem., 38, 145-153 (2017). 

  34. Y. Lee, D.H. Thompson, Stimuli-responsive liposomes for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9, e1450 (2017). 

  35. Y. Sheng, J. Hu, J. Shi, L.J. Lee, Stimuli-responsive carriers for controlled intracellular drug release, Curr. Med. Chem., 24, 1-11 (2017). 

  36. S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991-1003 (2013). 

  37. W. Xiao, X. Zeng, H. Lin, K. Han, H. Z. Jia, and X. Z. Zhang, Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs, Chem. Commun. (Camb), 51, 1475-1478 (2015). 

  38. W. Cheng, L. Gu, W. Ren, and Y. Liu, Stimuli-responsive polymers for anti-cancer drug delivery, C, Mater. Sci. Eng. C, 45, 600-608 (2014). 

  39. G. Qing, M. Li, L. Deng, Z. Lv, P. Ding, and T. Sun, Smart drug release systems based on stimuli-responsive polymers, Mini Rev. Med. Chem., 13, 1369-1380 (2013). 

  40. Q. Tang, B. Yu, L. Gao, H. Cong, N. Song, C. Lu, Stimuli responsive nanoparticles for controlled anti-cancer drug release, Curr. Med. Chem., 25, 1-30 (2018). 

  41. B. Surnar and M. Jayakannan, Stimuli-responsive poly(caprolactone) vesicles for dual drug delivery under the gastrointestinal tract, Biomacromolecules, 14, 4377-4387 (2013). 

  42. X. Wu, Y. J. Tan, H. T. Toh, L. H. Nguyen, S. H. Kho, S. Y. Chew, H. S. Yoon, and X. W. Liu, Stimuli-responsive multifunctional glyconanoparticle platforms for targeted drug delivery and cancer cell imaging, Chem. Sci., 8, 3980-3988 (2017). 

  43. M. Zhou, K. Wen, Y. Bi, H. Lu, J. Chen, Y. Hu, and Z. Chai, The Application of Stimuli-responsive Nanocarriers for Targeted Drug Delivery, Curr. Top. Med. Chem., 17, 2319-2334 (2017). 

  44. Z. Amoozgar, J. Park, Q. Lin, and Y. Yeo, Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery, Mol. Pharm., 9, 1262-1270 (2012). 

  45. T. Woraphatphadung, W. Sajomsang, T. Rojanarata, T. Ngawhirunpat, P. Tonglairoum, P. Opanasopit, Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery, AAPS PharmSciTech., 19, 1-10 (2017). 

  46. Y. Lv, H. Huang, B. Yang, H. Liu, Y. Li, and J. Wang, A robust pH-sensitive drug carrier: aqueous micelles mineralized by calcium phosphate based on chitosan, Carbohydr. Polym., 111, 101-107 (2014). 

  47. S. Cerritelli, D. Velluto, and J. A. Hubbell, PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery, Biomacromolecules, 8, 1966-1972 (2007). 

  48. J. X. Chen, M. Wang, H. H. Tian, and J. H. Chen, Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy, Colloids Surf. B, 134, 81-87 (2015). 

  49. W. Lin, X. Guan, T. Sun, Y. Huang, X. Jing, and Z. Xie, Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery, Colloids Surf. B, 126, 217-223 (2015). 

  50. J. Li, M. Huo, J. Wang, J. Zhou, J. M. Mohammad, Y. Zhang, Q. Zhu, A. Y. Waddad, and Q. Zhang, Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel, Biomaterials, 33, 2310-2320 (2012). 

  51. J. Bae, A. Maurya, Z. Shariat-Madar, S. N. Murthy, and S. Jo, Novel Redox-responsive amphiphilic copolymer micelles for drug delivery: Synthesis and characterization, AAPS J., 17, 1357-1368 (2015). 

  52. C. Sun, X. Li, X. Du, and T. Wang, Redox-responsive micelles for triggered drug delivery and effective laryngopharyngeal cancer therapy, Int. J. Biol. Macromol., 112, 65-73 (2018). 

  53. C. Zhao, L. Shao, J. Lu, C. Zhao, Y. Wei, J. Liu, M. Li, Y. Wu, Triple redox responsive poly(ethylene glycol)-polycaprolactone polymeric nanocarriers for fine-controlled drug release, Macromol. Biosci., 17, 1600295 (2017). 

  54. J. T. Lin, Z. K. Liu, Q. L. Zhu, X. H. Rong, C. L. Liang, J. Wang, D. Ma, J. Sun, and G. H. Wang, Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles, Colloids Surf. B, 155, 41-50 (2017). 

  55. Y. Su, Y. Hu, Y. Du, X. Huang, J. He, J. You, H. Yuan, and F. Hu, Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy, Mol. Pharm., 12, 1193-1202 (2015). 

  56. M. Vila-Caballer, G. Codolo, F. Munari, A. Malfanti, M. Fassan, M. Rugge, A. Balasso, M. de Bernard, and S. Salmaso, A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment, J. Control. Release, 238, 31-42 (2016). 

  57. C. L. Peng, L. Y. Yang, T. Y. Luo, P. S. Lai, S. J. Yang, W. J. Lin, and M. J. Shieh, Development of pH sensitive 2-(diisopropylamino) ethyl methacrylate based nanoparticles for photodynamic therapy, Nanotechnology, 21, 155103 (2010). 

  58. I. S. Kim and I. J. Oh, Drug release from the enzyme-degradable and pH-sensitive hydrogel composed of glycidyl methacrylate dextran and poly(acrylic acid), Arch. Pharm. Res., 28, 983-987 (2005). 

  59. T. S. Angeles, P. A. Smanik, C. L. Borders, Jr., and R. E. Viola, Aspartokinase-homoserine dehydrogenase I from Escherichia coli: pH and chemical modification studies of the kinase activity, Biochemistry, 28, 8771-8777 (1989). 

  60. J. Lu, Y. Li, D. Hu, X. Chen, Y. Liu, L. Wang, and Y. Zhao, Synthesis and properties of pH-, thermo-, and salt-sensitive modified poly(aspartic acid)/poly(vinyl alcohol) IPN hydrogel and its drug controlled release, Biomed. Res. Int., 2015, 236745 (2015). 

  61. J. Zheng, X. Tian, Y. Sun, D. Lu, and W. Yang, pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery, Int. J. Pharm., 450, 296-303 (2013). 

  62. H. Guo and J. C. Kim, Reduction-Sensitive Poly(ethylenimine) Nanogel Bearing Dithiodipropionic Acid, Chem. Pharm. Bull., 65, 718-725 (2017). 

  63. L. Liu, S. Li, L. Liu, D. Deng, and N. Xia, Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes, Analyst, 137, 3794-3799 (2012). 

  64. K. S. Blevins, J. H. Jeong, M. Ou, J. H. Brumbach, and S. W. Kim, EphA2 targeting peptide tethered bioreducible poly(cystamine bisacrylamide-diamino hexane) for the delivery of therapeutic pCMV-RAE-1gamma to pancreatic islets, J. Control. Release, 158, 115-122 (2012). 

  65. S. Tan, G. Wang, redox-responsive and ph-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo, Drug Des. Devel. Ther., 11, 3519-3529 (2017). 

  66. S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, J. Control. Release, 126, 187-204 (2008). 

  67. F. Puoci, F. Iemma, and N. Picci, Stimuli-responsive molecularly imprinted polymers for drug delivery: a review, Curr. Drug Deliv., 5, 85-96 (2008). 

  68. D. Chen and J. Sun, In vitro and in vivo evaluation of PEG-conjugated ketal-based chitosan micelles as pH-sensitive carriers, Polym. Chem., 6, 998-1004 (2015). 

  69. A. Babu, R. Ramesh, Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy, Mar. Drugs., 15(4), 96 (2017). 

  70. C. Wu, J. Yang, X. Xu, C. Gao, S. Lu, and M. Liu, Redox-responsive core-cross linked mPEGylated starch micelles as nanocarriers for intracellular anticancer drug release, Eur. Polym. J., 83, 230-243 (2016). 

  71. Y. W. Hu, Y. Z. Du, N. Liu, X. Liu, T. T. Meng, B. L. Cheng, J. B. He, J. You, H. Yuan, and F. Q. Hu, Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier, J. Control. Release, 206, 91-100 (2015). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로