$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

5G 안테나 기술 동향 원문보기

電磁波技術 : 韓國電磁波學會誌 = The Proceedings of the Korean Institute of Electromagnetic Engineering and Science, v.29 no.2, 2018년, pp.3 - 15  

이승윤 (포항공과대학교) ,  윤영노 (포항공과대학교) ,  박준호 (포항공과대학교) ,  추무궁 (포항공과대학교) ,  김연우 (포항공과대학교) ,  최재현 (포항공과대학교) ,  홍원빈 (포항공과대학교)

초록이 없습니다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • IMT-2020 혹은 5G NR로 명명된 5G 통신은 기존 4G 통신 (IMT-Advanced or LTE-Advanced or IEEE 802.16 m) 및 3G (IMT-2000 or LTE or IEEE 802.16 e) 대비 초고속, 저지연, 초연결을 목표로 한다. 5G 통신은 최대 20 Gbps의 전송속도, 100 Mbps의 이용자 체감 전송 속도, 1 ms의 전송 지연, 10 6 기기 수/km 2 의 최대 기기 연결 수 등의 성능지표를 핵심으로 한다.
  • AoD용 안테나는 인간의 눈에 보이지 않도록 투명안테나를 기반으로 하여 설계되어야 하며, 5G 통신을 위한 어레이 구성이 필수적이다. 따라서 5G 스펙트럼에서 고효율 안테나 어레이에 대한 수요를 만족시키기 위해 디스플레이 영역에 내장된 광학 투명 안테나 [28] 가 제안 된 것이다.
  • 마지막으로 전파 음영지역이 발생하는 무선 통신 채널 환경에서 활용되는 리피터 시스템에 대한 연구를 소개한다.이를 구현하기 위한 방법으로 활용되는 주파수 선택적 표면(Frequency Selective Surface) 기반의 tranmit array, reflect array, polarization converter와 이들을 능동적으로 제어하기 위해 주파수 선택적 표면에 능동소자를 결합하는 최근의 연구 동향에 대해 소개하고자 한다.
  • 마지막으로 전파 음영지역이 발생하는 무선 통신 채널 환경에서 활용되는 리피터 시스템에 대한 연구를 소개한다.이를 구현하기 위한 방법으로 활용되는 주파수 선택적 표면(Frequency Selective Surface) 기반의 tranmit array, reflect array, polarization converter와 이들을 능동적으로 제어하기 위해 주파수 선택적 표면에 능동소자를 결합하는 최근의 연구 동향에 대해 소개하고자 한다.

가설 설정

  • 4 bit 위상 천이기의 사용을 가정하였으며, 22.5° 단위의 위상 조절에 따라 ±49° 의 빔 조향 범위(beam scan range)를 확인할 수 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
5G 통신의 성능 지표는? 16 e) 대비 초고속, 저지연, 초연결을 목표로 한다. 5G 통신은 최대 20 Gbps의 전송속도, 100 Mbps의 이용자 체감 전송 속도, 1 ms의 전송 지연, 10 6 기기 수/km 2 의 최대 기기 연결 수 등의 성능지표를 핵심으로 한다. 위의 성능을 달성하기 위해 Millimeter-wave (mmWave), Massive MIMO, 그리고 빔 포밍 등이 5G 통신의 핵심 기술로 떠오르고 있다.
5G 통신의 목표는 무엇인가? IMT-2020 혹은 5G NR로 명명된 5G 통신은 기존 4G 통신 (IMT-Advanced or LTE-Advanced or IEEE 802.16 m) 및 3G (IMT-2000 or LTE or IEEE 802.16 e) 대비 초고속, 저지연, 초연결을 목표로 한다. 5G 통신은 최대 20 Gbps의 전송속도, 100 Mbps의 이용자 체감 전송 속도, 1 ms의 전송 지연, 10 6 기기 수/km 2 의 최대 기기 연결 수 등의 성능지표를 핵심으로 한다.
4G 안테나 사이의 공간을 최대화 하는것이 중요한 이유는? 1/4 파장 inverted F type 안테나 (IFA 안테나) 및 inverted L type 안테나는 상대적으로 작은 크기로 인해 이동 단말기에 널리 사용되어 왔다 [6] . 4G MIMO의 경우, 높은 통신 속도를 얻기 위해서는 다수개의 안테나 단품이 요구되며, 안테나 단품들 사이의 충분한 이격 배치가 요구된다 [7] . 결과적으로 인접한 4G 안테나 사이의 공간을 최대화 하는 것은 스마트 폰에 가장 널리 사용되는 안테나 배치 전략 중 하나다.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations (Release 10), Standard 3GPP TR 25.996, Mar. 2011. 

  2. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, 2013. 

  3. Y. L. Ban, Y. F. Qiang, Z. Chen, K. Kang, and J. H. Guo, "A dual-loop antenna design for hepta-band WWAN/LTE metal-rimmed smartphone applications", IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 48-58, Jan. 2015. 

  4. A. Osseiran, Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G mobile and wireless communications: The vision of the METIS project", IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, May 2014. 

  5. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, "What will 5G be?", IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, Jun. 2014. 

  6. S. W. Lee, H. S. Jung, and Y. J. Sung, "A reconfigurable antenna for LTE/WWAN mobile handset applications", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 48-51, 2015. 

  7. Q. Wang, Y. Jing, "Closed-form average SNR and ergodic capacity approximations for best relay selection", IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 2827-2833, April 2016. 

  8. Y. Kim, W. Hong, "Coexistance issues concerning 4G and mmWave 5G antennas for mobile terminals", in 2017 IEEE 6th Asia-Pacific Conference on Antennas and Propagation (APCAP). 

  9. M. Y. Li, Z. Q. Xu, Y. L. Ban, C. Y. D. Sim, and Z. F. Yu, "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone", IET Microwaves, Antennas & Propagation, vol. 11, no. 12, pp. 1810-1816, 9 22 2017. 

  10. M. Y. Li, Y. L. Ban, Z. Q. Xu, J. Guo, and Z. F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications", IEEE Access, vol. 6, pp. 6160-6170, 2018. 

  11. Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, "12-Port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications", IEEE Access, vol. 6, pp. 344-354, 2018. 

  12. K. L. Wong, C. Y. Tsai, and J. Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone", IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1765-1778, Apr. 2017. 

  13. C. Gao, X. Q. Li, W. J. Lu, and K. L. Wong, "Conceptual design and implementation of a four element MIMO antenna system packaged within a metallic handset", Microwave and Optical Technology Letters, vol. 60, no. 2, pp. 436-444, 2018. 

  14. Y. Huo, X. Dong, and W. Xu, "5G cellular user equipment: from theory to practical hardware design", IEEE Access, vol. 5, pp. 13992-14010, 2017. 

  15. W. Hong, K. Baek, and Y. Lee, "Quantitative analysis of the effects of polarization and pattern reconfiguration for mmWave 5G mobile antenna prototypes", in 2017 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, 2017, pp. 68-71. 

  16. Q. Wu, J. Yin, C. Yu, H. Wang, and W. Hong, "Low-profile millimeter-wave SIW cavity-backed dual-band circularly polarized antenna", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 7310-7315, Dec. 2017. 

  17. W. Hong, K. H. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6250-6261, Dec. 2017. 

  18. B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. Reynolds, O. Renstrom, and G. Weibull, "7.2 A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication," in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 128-129. 

  19. J. D. Dunworth, A. Homayoun, B. H. Ku, Y. C. Ou, K. Chakraborty, G. Liu, and H. Hedayati, "A 28 GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment", in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 2018, pp. 70-72. 

  20. W. Hong, K. H. Baek, Y. Lee, Y. Kim, and S. T. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices", IEEE Communications Magazine, vol. 52, no. 9, pp. 63-69, Sep. 2014. 

  21. W. Hong, "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift", IEEE Microwave Magazine, vol. 18, no. 7, pp. 86-102, Nov.-Dec. 2017. 

  22. Y. P. Zhang, D. Liu, "Antenna-on-chip and antenna-inpackage solutions to highly integrated millimeter-wave devices for wireless communications", IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 2830-2841, 2009. 

  23. D. Liu, X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antennain-package design considerations for ka-band 5G communication applications", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6372-6379, Dec. 2017. 

  24. J.-H. Lee, S. Pinel, J. Papapolymerou, J. Laskar and M. M. Tentzeris, "Low-loss LTCC cavity filters using systemon-package technology at 60 GHz," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 12, pp. 3817-3824, Dec. 2005. 

  25. M. K. Hedayati, A. Abdipour, R. S. Shirazi, M. John, M. J. Ammann, and R. B. Staszewski, "A 38 GHz on-chip antenna in 28-nm CMOS using artificial magnetic conductor for 5G wireless systems", in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran, 2016, pp. 29-32. 

  26. P. V. Bijumon, Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "Dielectric resonator antenna on silicon substrate for system on-chip applications", IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3404-3410, Nov. 2008. 

  27. S. Pan, F. Capolino, "Design of a CMOS On-Chip slot antenna with extremely flat cavity at 140 GHz", IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 827-830, 2011. 

  28. S. Y. Lee, D. Choi, Y. Youn, and W. Hong, "Electrical characterization of highly efficient, optically transparent nanometers-thick unit cells for antenna-on-display applications", in 2018 IEEE MTT-S International Microwave Symposium (IMS). 

  29. L. Hu, H. Wu, and Y. Cui, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes", MRS Bulletin, vol. 36 no. 10, pp. 760-765, 2011 

  30. Q. H. Dao, R. Tchuigoua, B. Geck, D. Manteuffel, P. von Witzendorff, and L. Overmeyer, "Optically transparent patch antennas based on silver nanowires for mm-wave applications", in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2189-2190. 

  31. Q. H. Dao, T. J. Cherogony, and B. Geck, "Optically transparent and circularly polarized patch antenna for K-band applications", in 2016 German Microwave Conference (GeMiC), Bochum, pp. 247-250. 2016. 

  32. M. A. Malek, S. Hakimi, S. K. Abdul Rahim, and A. K. Evizal, "Dual-Band CPW-Fed transparent antenna for active RFID tags", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 919-922, 2015. 

  33. S. Hong, Y. Kim, and C. Won Jung, "Transparent microstrip patch antennas with multilayer and metal-mesh films", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 772-775, 2017. 

  34. Q. L. Li, S. W. Cheung, D. Wu, and T. I. Yuk, "Optically transparent dual-band MIMO antenna using micro-metal mesh conductive film for WLAN system", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 920-923, 2017. 

  35. W. Hong, Z.H. Jiang, C. Yu, J. Zhou, P. Chen, Z. Yu, and Y. Cheng, "Multibeam antenna technologies for 5G wireless communications", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6231-6249, Dec. 2017. 

  36. X. Chen, H. Feng Ma, X. Ying Zou, W. Xiang Jiang, and T. Jun Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials", Journal of Applied Physics, vol. 110, no. 4, 2011. 

  37. Y. Youn, W. Hong, " Design of unit cell for low-power consumption beamforming by utilizing fabry-perot resonator", in The Korean Institute of Electromagnetic and Science (KIEES) 2017 Annual Symposium, Seoul, Korea, Nov. 2017. 

  38. D. Berry, R. Malech, and W. Kennedy, "The reflectarray antenna", IEEE Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 645-651, Nov. 1963. 

  39. B. V. Ha, R. E. Zich, P. Pirinoli, and S. V. Hum, "Design and optimization of a multi-resonant reflectarray element", in The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, pp. 2301-2304. 2014. 

  40. A. M. Abd-Elhady, S. H. Zainud-Deen, A. A. Mitkees, and A. A. Kishk, "Varying slot lengths strip loading squared dielectric resonator reflectarray." International Journal of Electromagnetics and Applications, vol. 2, no. 3, pp. 51-55, 2012. 

  41. I. Sohail, Y. Ranga, K. P. Esselle, and S. G. Hay, "A linear to circular polarization converter based on Jerusalem-Cross frequency selective surface," in 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, pp. 2141-2143, 2013. 

  42. Y. Youn, W. Hong, "Planar dual-band linear to circular polarization converter using radial-shape multi-layer FSS". in 2018 IEEE Antennas and Propagation Society International Symposium (APSURSI). 

  43. S. V. Hum, J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review," IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 183-198, Jan. 2014. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로