$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

아시아 국가 내에서 감염빈도가 높은 플라비바이러스의 구별: 생물정보학적 접근을 통한 항원결정기 예측

Discrimination of Flaviviruses with High Frequency of Infection in Asian Countries: Epitope Prediction by Bioinformatic Approaches

초록

최근 지구온난화로 인해 모기의 서식지가 넓어짐에 따라, 모기가 매개하는 감염병의 감염기회가 높아지고 있다. 플라비바이러스는 대표적인 모기매개 바이러스로, 아시아 국가 내에서 상대적으로 감염빈도가 높은 플라비바이러스로는 지카 바이러스, 뎅기 바이러스 및 일본뇌염 바이러스가 있다. 이들은 감염증상 및 치료방법이 다르기 때문에 정확한 구별진단이 요구되고 있지만, 아직까지 정확하게 구별 가능한 진단기술이 없다. 본 연구에서는 생물정보학 데이터베이스에 구축된 정보 및 분석도구를 바탕으로 플라비바이러스 구별 진단법에 대해 제안하였다. 3종 플라비바이러스의 면역진단을 위한 표적 단백질로는 외피단백질 및 비구조단백질 1을 선정하였으며, 이들의 아미노산 다중 서열 분석을 통해 상동성을 분석하였다. 이로부터 연속적 10-15개의 펩타이드로 구성된 항원결정기 후보를 선별하였으며, 면역원성 분석과 3차원 구조 예측을 통해 가장 유용한 항원결정기 2종을 제시하였다. 이는 아시아 국가 내에서 감염빈도가 높은 3종의 플라비바이러스의 구별진단을 위한 활용 가치가 높을 것으로 기대된다.

Abstract

Recently, global warming has widened the habitat of mosquitoes and infection chances for mosquito-borne diseases are increasing. Flavivirus is a typical mosquito-borne virus. Flaviviruses with a relatively high frequency of infection in Asian countries include Zika, Dengue, and Japanese encephalitis viruses. Although distinctive diagnosis of flaviviruses is required because the symptoms and therapeutic method differ, there is no diagnostic method that can distinguish them accurately yet. In this study, we propose distinctive diagnosis method of flaviviruses using informations and analysis tools constructed in bioinformatic databases. The envelope protein and non-structural protein 1 which are useful protein for the immuno-diagnostics of three flaviviruses were selected. Their homology was analyzed by multiple sequence alignments and epitope candidates consisting of 10-15 amino acids were selected. Finally two epitopes were suggested to be most useful by immunogenicity analysis and 3D structure prediction. These approaches and results are expected to be great value in the distinctive diagnosis of three flaviviruses with a high frequency of infection in Asian countries.

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
플라비바이러스
플라비바이러스는 무엇인가?
플라비비리데 과 (Flaviviridae family)의 하위 생물학적 분류인 속 (genus)을 지칭한다

플라비바이러스(Flavivirus)는 플라비비리데 과 (Flaviviridae family)의 하위 생물학적 분류인 속 (genus)을 지칭한다. 플라비바이러스의 대표적인 종 (species)으로는 지카 바이러스(Zika virus), 뎅기 바이러스(Dengue virus), 일본뇌염 바이러스(Japanese encephalitis virus), 황열 바이러스(Yellow fever virus), 웨스트 나일 바이러스(West Nile virus) 및 세인트루이스 뇌염 바이러스(St.

플라비바이러스
플라비바이러스 중 아시아 국가 내에서 상대적으로 감염빈도가 높은 것은 무엇인가?
지카 바이러스, 뎅기 바이러스 및 일본뇌염 바이러스

최근 지구온난화로 인해 모기의 서식지가 넓어짐에 따라, 모기가 매개하는 감염병의 감염기회가 높아지고 있다. 플라비바이러스는 대표적인 모기매개 바이러스로, 아시아 국가 내에서 상대적으로 감염빈도가 높은 플라비바이러스로는 지카 바이러스, 뎅기 바이러스 및 일본뇌염 바이러스가 있다. 이들은 감염증상 및 치료방법이 다르기 때문에 정확한 구별진단이 요구되고 있지만, 아직까지 정확하게 구별 가능한 진단기술이 없다.

플라비바이러스
플라비바이러스의 공통된 특징은 무엇이가?
모두 40~65 나노미터(nm)의 크기로 구형 (spherical)의 형태이며, 전자현미경을 이용하여 관찰이 가능하다

플라비바이러스들은 모두 공통의 특징을 갖는다. 이들은 모두 40~65 나노미터(nm)의 크기로 구형 (spherical)의 형태이며, 전자현미경을 이용하여 관찰이 가능하다. 또한 플라비바이러스의 유전자는 (+)단일가닥의 리보핵산(RNA)으로, 약 10,000~11,000개의 염기 (base)로 구성되어있다.

질의응답 정보가 도움이 되었나요?

참고문헌 (44)

  1. 1. 이미애, "신종.재출현 해외유입 감염병의 진단," Ewha Med. J., 제39권, 제2호, pp.37-44, 2016. 
  2. 2. J. N. Conde, E. M. Silva, A. S. Barbosa, and R. Mohana-Borges, "The Complement System in Flavivirus Infections," Front. Microbiol., Vol.8, p.213, 2017. 
  3. 3. N. J. da Fonseca Jr., M. Q. Lima Afonso, N. G. Pedersoll, L. C. de Oliveira, D. S. Andrade, and L. Bleicher, "Sequence, Structure and Function Relationships in Flaviviruses as Assessed by Evolutive Aspects of Its Conserved Non- structural Protein Domains," Biochem. Biophys. Res. Commun., Vol.492, No.4, pp.565-571, 2017. 
  4. 4. http://viralzone.expasy.org/24?outlineall_by _species 
  5. 5. W. C. Ng, R. Soto-Acosta, S. S. Bradrick, M. A. Garcia-Blanco, and E. E. Ooi, "The 5' and 3' Untranslated Regions of the Flaviviral Genome," Viruses, Vol.9, No.6, p.137, 2017. 
  6. 6. B. D. Lindenbach and C. M. Rice, "Molecular Biology of Flaviviruses," Adv. Virus Res., Vol.59, pp.23-61, 2003. 
  7. 7. X. Li, W. Ma, G. Wong, S. Ma, S. Li, Y. Bi, and G. F. Gao, "A New Threat to Human Reproduction System Posed by Zika Virus (ZIKV): From Clinical Investigations to Experimental Studies," Virus Res., 2017. doi: 10.1016/j.virusres.2017.09.005 
  8. 8. A. Allard, B. M. Althouse, L. Hebert-Dufresne, and S. V. Scarpino, "The Risk of Sustained Sexual Transmission of Zika is Underestimated," PLoS Pathog., Vol.13, No.9, p.e1006633, 2017. 
  9. 9. U. Samarasekera and M. Triunfol, "Concern over Zika Virus Grips the World," Lancet, Vol.387, No.10018, pp.521-524, 2016. 
  10. 10. R. Mittal, D. Nguyen, L. H. Debs, A. P. Patel, G. Liu, V. M. Jhaveri, S. I. S. Kay, J. Mittal, E. S. Bandstra, R. T. Younis, P. Chapagain, D. T. Jayaweera, and X. Z. Liu, "Zika Virus: An Emerging Global Health Threat," Front. Cell Infect. Microbiol., Vol.7, p.486, 2017. 
  11. 11. S. Zhang, V. A. Kostyuchenko, T. S. Ng, X. N. Lim, J. S. Ooi, S. Lambert, T. Y. Tan, D. G. Widman, J. Shi, R. S. Baric, and S. M. Lok, "Neutralization Mechanism of a Highly Potent Antibody against Zika Virus," Nat. Commun., Vol.7, p.13679, 2016. 
  12. 12. V. M. Cao-Lormeau, A. Blake, S. Mons, S. Lastere, C. Roche, J. Vanhomwegen, T. Dub, L. Baudouin, A. Teissier, P. Larre, A. L. Vial, C. Decam, V. Choumet, S. K. Halstead, H. J. Willison, L. Musset, J. C. Manuguerra, P. Despres, E. Fournier, H. P. Mallet, D. Musso, A. Fontanet, J. Neil, and F. Ghawche, "Guillain- Barre Syndrome Outbreak Associated with Zika Virus Infection in French Polynesia: a Case-control Study," Lancet, Vol.387, No.10027, pp.1531-1539, 2016. 
  13. 13. H. Li, L. Saucedo-Cuevas, J. A. Regla-Nava, G. Chai, N. Sheets, W. Tang, A. V. Terskikh, S. Shresta, and J. G. Gleeson, "Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation," Cell Stem Cell, Vol.19, No.5, pp.593-598, 2016. 
  14. 14. 윤희정, 염준섭, "지카바이러스 감염," 대한내과학회지, 제91권, 제1호, pp.5-11, 2016. 
  15. 15. I. A. Rodenhuis-Zybert, J. Wilschut, and J. M. Smit, "Dengue Virus Life Cycle: Viral and Host Factors Modulating Infectivity," Cell. Mol. Life Sci., Vol.67, No.16, pp.2773-2786, 2010. 
  16. 16. K. M. Soo, B. Khalid, S. M. Ching, and H. Y. Chee, "Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections," PLoS One, Vol.11, No.5, p.e0154760, 2016. 
  17. 17. 이지연, 김현아, 김유철, 류성열, "스리랑카 봉사 활동 후 집단 발생한 뎅기열 8예 및 안구 침범," 대한내과학회지, 제92권, 제5호, pp.484-487, 2017. 
  18. 18. 이재갑, "뎅기열," 대한내과학회지, 제86권, 제3호, pp.277-281, 2014. 
  19. 19. W. H. Kim, M. J. Lee, W. C. Lee, and Y. H. Kwon, "Trends in Epidemiological Aspects and Features by Age-Specific of Japanese Encephalitis in Korea for the Last Two Decades," The KJAsEM, Vol.27, No.1, pp.5-9, 2017. 
  20. 20. 임형우, 노종엽, 이학선, 조신형, "2016년도 국내 일본뇌염 매개모기의 계절적 발생 현황," 주간 건강과 질병, 제10권, 제38호, pp.1029-1033, 2017. 
  21. 21. B. Connor and W. B. Bunn, "The Changing Epidemiology of Japanese Encephalitis and New Data: The Implications for New Recommendations for Japanese Encephalitis Vaccine," Trop. Dis. Travel Med. Vaccines, Vol.3, p.14, 2017. 
  22. 22. J. F. Obenauer, T. Andrew Joyner, and J. B. Harris, "The Importance of Human Population Characteristics in Modeling Aedes aegypti Distributions and Assessing Risk of Mosquito- borne Infectious Diseases," Trop. Med. Health, Vol.45, p.38, 2017. 
  23. 23. M. U. Kraemer, M. E. Sinka, K. A. Duda, A. Q. Mylne, F. M. Shearer, C. M. Barker, C. G. Moore, R. G. Carvalho, G. E. Coelho, W. Van Bortel, G. Hendrickx, F. Schaffner, I. R. Elyazar, H. J. Teng, O. J. Brady, J. P. Messina, D. M. Pigott, T. W. Scott, D. L. Smith, G. R. Wint, N. Golding, and S. I. Hay, "The Global Distribution of the Arbovirus Vectors Aedes aegypti and Ae. albopictus," Elife, Vol.4, p.e08347, 2015. 
  24. 24. J. Longbottom, A. J. Browne, D. M. Pigott, M. E. Sinka, N. Golding, S. I. Hay, C. L. Moyes, and F. M. Shearer, "Mapping the Spatial Distribution of the Japanese Encephalitis Vector, Culex Tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within Areas of Japanese Encephalitis Risk," Parasit. Vectors, Vol.10, p.148, 2017. 
  25. 25. R. K. Singh, K. Dhama, K. Karthik, R. Tiwari, R. Khandia, A. Munjal, H. M. N. Iqbal, Y. S. Malik, and R. Bueno-Mari, "Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update," Front. Microbiol., Vol.8, p.2677, 2018. 
  26. 26. J. Pang, P. Y. Chia, D. C. Lye, and Y. S. Leo, "Progress and Challenges towards Point-of- Care Diagnostic Development for Dengue," J. Clin. Microbiol., Vol.55, No.22, pp.3339-3349, 2017. 
  27. 27. S. J. Wong, A. Furuya, J. Zou, X. Xie, A. P. Dupuis, L. D. Kramer, and P. Y. Shi, "A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis," EBioMedicine, Vol.16, pp.136-140, 2017. 
  28. 28. D. Wasik, A. Mulchandani, and M. V. Yates, "Point-of-Use Nanobiosensor for Detection of Dengue Virus NS1 Antigen in Adult Aedes aegypti: A Potential Tool for Improved Dengue Surveillance," Anal. Chem., Vol.90, No.1, pp.679-684, 2017. 
  29. 29. A. C. Andries, V. Duong, S. Ong, S. Ros, A. Sakuntabhai, P. Horwood, P. Dussart, and P. Buchy, "Evaluation of the Performances of Six Commercial Kits Designed for Dengue NS1 and Anti-Dengue IgM, IgG and IgA Detection in Urine and Saliva Clinical Specimens," BMC Infec. Dis., Vol.16, p.201, 2016. 
  30. 30. S. Olschlager, A. Enfissi, M. Zaruba, M. Kazanji, and D. Rousset, "Diagnostic Validation of the RealStar $^{(R)}$ Zika Virus Reverse Transcription Polymerase Chain Reaction Kit for Detection of Zika Virus RNA in Urine and Serum Specimens," Am. J. Trop. Med. Hyg., Vol.97, No.4, pp.1070-1071, 2017. 
  31. 31. H. L. Wilson, T. Tran, J. Druce, M. Dupont- Rouzeyrol, and M. Catton, "Neutralization Assay for Zika and Dengue Viruses by Use of Real-Time-PCR-Based Endpoint Assessment," J. Clin. Microbiol., Vol.55, No.10, pp.3104-3112, 2017. 
  32. 32. Y. Kurosaki, D. B. G. Martins, M. Kimura, A. D. S. Catena, M. A. C. S. M. Borba, S. D. S. Mattos, H. Abe, R. Yoshikawa, J. L. de Lima Filho, and J. Yasuda, "Development and Evaluation of a Rapid Molecular Diagnostic Test for Zika Virus Infection by Reverse Transcription Loop-Mediated Isothermal Amplification," Sci. Rep., Vol.7, No.1, p.13503, 2017. 
  33. 33. T. Pisitkun, J. D. Hoffert, F. Saeed, and M. A. Knepper, "NHLBI-AbDesigner: An Online Tool for Design of Peptide-Directed Antibodies," Am. J. Physiol. Cell. Physiol., Vol.302, No.1, pp.C154-C164, 2012. 
  34. 34. M. H. Van Regenmortel, "Antigenicity and Immunogenicity of Synthetic Peptides," Biologicals, Vol.29, No.3-4, pp.209-213, 2001. 
  35. 35. http://www.abcam.com/protocols/tips-for- designing-a-good-peptide-immunogen 
  36. 36. M. Haji Abdolvanhab, M. R. Mofrad, and H. Schellekens, "Interferon Beta: From Molecular Level to Therapeutic Effects," Int. Rev. Cell. Mol. Biol., Vol.326, pp.343-372, 2016. 
  37. 37. C. V. Carrington, J. E. Foster, O. G. Pybus, S. N. Bennett, and E. C. Holmes, "Invasion and Maintenance of Dengue Virus Type 2 and Type 4 in the Americas," J. Virol., Vol.79, No.23, pp.14680-14687, 2005. 
  38. 38. S. Hills, R. Martin, A. Marfin, and M. Fischer, "Control of Japanese encephalitis in Asia: the Time is Now," Expert Rev. Anti Infect. Ther., Vol.12, No.8, pp.901-904, 2014. 
  39. 39. M. G. Mateu, M. A. Martinez, L. Capucci, D. Andreu, E. Giralt, F. Sobrino, E. Brocchi, and E. Domingo, "A Single Amino Acid Substitution Affects Multiple Overlapping Epitopes in the Major Antigenic Site of Foot-And-Mouth Disease Virus of Serotype C," J. Gen. Virol., Vol.71, pp.629-637, 1990. 
  40. 40. J. E. Larsen and O. Lund, M. Nielsen, "Improved Method for Predicting Linear B-Cell Epitopes," Immunome Res., Vol.2, p.2, 2006. 
  41. 41. J. Maupetit, P. Derreumaux, and P. Tuffery, "PEP-FOLD: An Online Resource for De novo Peptide Structure Prediction," Nucleic Acids Res., Vol.37, pp.W498-W503, 2009. 
  42. 42. P. Thevenet, Y. Shen, J. Maupetit, F. Guyon, P. Derreumaux, and P. Tuffery, "PEP-FOLD: An Updated De novo Structure Prediction Server for Both Linear And Disulfide Bonded Cyclic Peptides," Nucleic Acids Res., Vol.40, pp.W288-W293, 2012. 
  43. 43. B. Zhang, B. A. Pinsky, J. S. Ananta, S. Zhao, S. Arulkumar, H. Wan, M. K. Sahoo, J. Abeynayake, J. J. Waggoner, C. Hopes, M. Tang, and H. Dai, "Diagnosis of Zika Virus Infection on a Nanotechnology Platform," Nat. Med., Vol.23, No.5, pp.548-550, 2017. 
  44. 44. A. Balmaseda, K. Stettler, R. Medialdea- Carrera, D. Collado, X. Jin, J. V. Zambrana, S. Jaconi, E. Cameroni, S. Saborio, F. Rovida, E. Percivalle, S. Ijaz, S. Dicks, I. Ushiro-Lumb, L. Barzon, P. Siqueira, D. W. G. Brown, F. Baldanti, R. Tedder, M. Zambon, A. M. B. de Filippis, E. Harris, and D. Corti, "Antibody- Based Assay Discriminates Zika Virus Infection from Other Flaviviruses," Proc. Natl. Acad. Sci. U.S.A., Vol.114, No.31, pp.8384-8389, 2017. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

DOI 인용 스타일

"" 핵심어 질의응답