$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

라임병 원인 스피로헤타 Borrelia burgdorferi의 운동성과 주화성: 발병기전에서의 역할
Motility and Chemotaxis in the Lyme Spirochete Borrelia burgdorferi: Role in Pathogenesis 원문보기

생명과학회지 = Journal of life science, v.28 no.5 = no.217, 2018년, pp.627 - 637  

유아영 (부산대학교 자연과학대학 미생물학과) ,  강호영 (부산대학교 자연과학대학 미생물학과) ,  문기환 (한국해양대학교 해양과학기술대학 해양생명과학부)

초록
AI-Helper 아이콘AI-Helper

운동성 및 주화성스피로헤타를 포함한 많은 병원성 세균의 병원인자로 작용한다. 라임병은 스피로헤타인 Borrelia burgdorferi에 의해 발병하며, 검은다리 참진드기에 물린 상처를 통해 사람에게 전염되는 미국 및 유럽 내에서 가장 유행하는 벡터-매개성 질병이다. Borrelia를 포함한 스피로헤타 균들은 다른 일반적인 편모를 가지는 균들과 달리 주변세포질에 그 편모를 가지며, 운동성이 결여된 돌연변이주의 경우 야생주와 같은 병원성을 가지지 못한다고 알려져 있다. 또한 대장균에 비해 더욱 다양한 종류의 주화성 관련 유전자를 지니고 있어, 편모를 통한 이 균의 운동성이 매우 복잡한 메커니즘을 가질 것으로 예상할 수 있다. 최근 초저온 전자현미경 및 새로운 유전자 조작기술의 발달로 인해 베일에 싸여 있던 스피로헤타의 운동성 및 주화성, 특이한 편모의 구조가 밝혀지고 있다. 본 리뷰 논문에서는 이러한 최첨단 기술의 이용으로 현재까지 밝혀진 Borrelia burgdorferi의 새로운 편모 모터 구조를 소개하고, 균의 병원성과 운동성 및 주화성의 상관관계에 대해 설명하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Motility and chemotaxis are crucial for disease development in many motile pathogens, including spirochetes. In many bacteria, motility is provided by flagella rotation, which is controlled by a chemotaxis-signal-transduction system. Thus, motility and chemotaxis are inextricably linked. Spirochetes...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 최근의 연구에 의하면 운동성 및 주화성이 병원성 스피로헤타의 병원성과 매우 깊은 상관관계가 있으며, 특히 Borrelia burgdorferi의 경우 숙주와 벡터 사이의 감염 순환주기에 직접 적인 영향을 미치는 것으로 보고되었다[12, 28, 38, 40, 41, 43, 65]. 본 총설에서는 대표적인 병원성 스피로헤타인 B. burgdorferi를 이용한 최근 연구에서 밝혀진 내용의 소개를 통해, 스피로헤타의 복잡하고 특이한 운동성과 주화성이 병원성에 미치는 영향에 대해 설명하고자 한다.
  • 본 총설에서는 대표적인 스피로헤타 중 하나인 B. burgdorferi의 주요 연구들을 중심으로 소개하고자 한다. B.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
B. burgdorferi가 숙주에 감염되어 라임병을 발병할 경우, 발병 시기 및 증상에 따라 구분되는 세 단계를 설명하라? burgdorferi가 숙주에 감염되어 라임병을 발병할 경우, 그 시기 및 발병증상에 따라 크게 세 단계로 구분한다. 첫번째 단계인 초기 국소 라임병(early localized Lyme disease)은 진드기 흡혈 후 3~30일 내 발생하며, 감염된 환자의 70~80%의 경우 흡혈 부위에 이동성 홍반(erythema migrans)이 발생한다(Fig. 5. 우측 점선상자 2). 이는 흡혈부위로 침투한 B. burgdorferi가 진피조직 내에서 이동하며 나타나는 염증반응으로 스피로헤타의 이동에 맞춰 나타나는 라임병의 대표적인 병적 증상인 황소 눈 모양의 발진(bull’s-eye rash)이다[10, 31,54]. 두번째 단계인 초기 확산 라임병(early disseminated Lyme disease)은 진드기 흡혈 후 2-8주 내 발생하며, 흡혈 부위외 다수의 이동성 홍반 및 안면마비(Fig. 5. 우측 점선상자 1), 수막염 유사 증상과 같은 신경계 병증이 나타난다. 이러한 병증 역시피부조직으로부터 유래한 B. burgdorferi가 운동성 및 주화성을 이용하여 림프조직 내부로 침투해 발생하는 염증 반응의 일부이다[10, 31, 54, 73]. 세번째 단계인 후기 만성 라임병(late persistent Lyme disease)은 진드기 흡혈 후 6개월 이후 발생하며, 주로 항생제 치료 후 회복되지 못한 환자들에게서 관절염 등의 증상으로 나타난다(Fig. 5.
다른 균과 구별되는 스피로헤타의 모양과 운동 상의 특징은 무엇인가? 스피로헤타는 물결형태의 운동성과 조밀하게 꼬여진 나선 형태의 모양으로 다른 균들과 구별된다[12, 13, 18]. 스피로헤타의 막 구조는 일반적인 그람음성균과 마찬가지로 외막, 펩티도글리칸 층, 내막으로 구성된다.
Borrelia burgdorferi sensu lato에 의해 유발되는 질병은 무엇인가? l.)는북미 및 유럽지역에서 흔히 발생하는 벡터-매개성 감염 질병인 라임병(i.e. Lyme disease, Lyme borreliosis)을 유발한다[10, 31, 37, 64]. 미국 지역 내에서 가장 빈번히 발견되는 B.
질의응답 정보가 도움이 되었나요?

참고문헌 (91)

  1. Adler, B. and de la Pena Moctezuma, A. 2010. Leptospira and leptospirosis. Vet. Microbiol. 140, 287-296. 

  2. Aldridge, P. and Hughes, K. T. 2002. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160-165. 

  3. Arvikar, S. L. and Steere, A. C. 2015. Diagnosis and treatment of Lyme arthritis. Infect. Dis. Clin. North. Am. 29, 269-280. 

  4. Bacon, R. M., Kugeler, K. J. and Mead, P. S. Centers for Disease and Prevention (CDC). 2008. Surveillance for Lyme disease--United States, 1992-2006. MMWR. Surveill. Summ. 57, 1-9. 

  5. Bakker, R. G., Li, C., Miller, M. R., Cunningham, C. and Charon, N. W. 2007. Identification of specific chemoattractants and genetic complementation of a Borrelia burgdorferi chemotaxis mutant: flow cytometry-based capillary tube chemotaxis assay. Appl. Environ. Microbiol. 73, 1180-1188. 

  6. Balmelli, T. and Piffaretti, J. C. 1995. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146, 329-340. 

  7. Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A. and Schneerson, R. 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 100, 7913-7918. 

  8. Bischoff, D. S. and Ordal, G. W. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6, 23-28. 

  9. Bockenstedt, L. K., Gonzalez, D., Mao, J., Li, M., Belperron, A. A. and Haberman, A. 2014. What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the lyme disease spirochete. Yale. J. Biol. Med. 87, 3-13. 

  10. Bockenstedt, L. K. and Wormser, G. P. 2014. Review: unraveling Lyme disease. Arthritis. Rheumatol. 66, 2313-2323. 

  11. Chao, X., Muff, T. J., Park, S. Y., Zhang, S., Pollard, A. M., Ordal, G. W., Bilwes, A. M. and Crane, B. R. 2006. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124, 561-571. 

  12. Charon, N. W., Cockburn, A., Li, C., Liu, J., Miller, K. A., Miller, M. R., Motaleb, M. A. and Wolgemuth, C. W. 2012. The unique paradigm of spirochete motility and chemotaxis. Annu. Rev. Microbiol. 66, 349-370. 

  13. Charon, N. W. and Goldstein, S. F. 2002. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 36, 47-73. 

  14. Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J. R., Hendrixson, D. R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Muller, A., Dobro, M. J. and Jensen, G. J. 2011. Structural diversity of bacterial flagellar motors. EMBO. J. 30, 2972-2981. 

  15. Chevance, F. F. and Hughes, K. T. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455-465. 

  16. Dashper, S. G., Seers, C. A., Tan, K. H. and Reynolds, E. C. 2011. Virulence factors of the oral spirochete Treponema denticola. J. Dent. Res. 90, 691-703. 

  17. de Silva, A. M., Telford, S. R. 3rd, Brunet, L. R., Barthold, S. W. and Fikrig, E. 1996. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J. Exp. Med. 183, 271-275. 

  18. Dombrowski, C., Kan, W., Motaleb, M. A., Charon, N. W., Goldstein, R. E. and Wolgemuth, C. W. 2009. The elastic basis for the shape of Borrelia burgdorferi. Biophys. J. 96, 4409-4417. 

  19. Feng, J., Shi, W., Zhang, S., Sullivan, D., Auwaerter, P. G. and Zhang, Y. 2016. A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol. 7, 743. 

  20. Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R., Hickey, E. K., Gwinn, M., Dougherty, B., Tomb, J. F., Fleischmann, R. D., Richardson, D., Peterson, J., Kerlavage, A. R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M. D., Gocayne, J., Weidman, J., Utterback, T., Watthey, L., McDonald, L., Artiach, P., Bowman, C., Garland, S., Fuji, C., Cotton, M. D., Horst, K., Roberts, K., Hatch, B., Smith, H. O. and Venter, J. C. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580-586. 

  21. Garrity, L. F. and Ordal, G. W. 1995. Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol. Ther. 68, 87-104. 

  22. Ge, Y. and Charon, N. W. 1997. FlaA, a putative flagellar outer sheath protein, is not an immunodominant antigen associated with Lyme disease. Infect. Immun. 65, 2992-2995. 

  23. Giacani, L. and Lukehart, S. A. 2014. The endemic treponematoses. Clin. Microbiol. Rev. 27, 89-115. 

  24. Glekas, G. D., Plutz, M. J., Walukiewicz, H. E., Allen, G. M., Rao, C. V. and Ordal, G. W. 2012. Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. Mol. Microbiol. 86, 743-756. 

  25. Goldstein, S. F., Buttle, K. F. and Charon, N. W. 1996. Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage electron microscopy. J. Bacteriol. 178, 6539-6545. 

  26. Goldstein, S. F., Charon, N. W. and Kreiling, J. A. 1994. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc. Natl. Acad. Sci. USA. 91, 3433-3437. 

  27. Guerau-de-Arellano, M. and Huber, B. T. 2002. Development of autoimmunity in Lyme arthritis. Curr. Opin. Rheumatol. 14, 388-393. 

  28. Guyard, C., Raffel, S. J., Schrumpf, M. E., Dahlstrom, E., Sturdevant, D., Ricklefs, S. M., Martens, C., Hayes, S. F., Fischer, E. R., Hansen, B. T., Porcella, S. F. and Schwan, T. G. 2013. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii. PLoS One 8, e72550. 

  29. Haake, D. A. and Levett, P. N. 2015. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 387, 65-97. 

  30. Hazelbauer, G. L. 2012. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285-303. 

  31. Herzer, P., Fingerle, V., Pfister, H. W. and Krause, A. 2014. [Lyme borreliosis]. Internist (Berl). 55, 789-802; quiz 803-804. 

  32. Hovind-Hougen, K. 1984. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale. J. Biol. Med. 57, 543-548. 

  33. Karna, S. L., Sanjuan E., Esteve-Gassent, M. D., Miller, C. L., Maruskova, M. and Seshu, J. 2011. CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect. Immun. 79, 732-744. 

  34. Ko, A. I., Goarant, C. and Picardeau, M. 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 7, 736-747. 

  35. Kristich, C. J. and Ordal, G. W. 2002. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J. Biol. Chem. 277, 25356-25362. 

  36. Kudryashev, M., Cyrklaff, M., Baumeister, W., Simon, M. M., Wallich, R. and Frischknecht, F. 2009. Comparative cryoelectron tomography of pathogenic Lyme disease spirochetes. Mol. Microbiol. 71, 1415-34. 

  37. Kuehn, B. M. 2013. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 310, 1110. 

  38. Lambert, A., Picardeau, M., Haake, D. A., Sermswan, R. W., Srikram, A., Adler, B. and Murray, G. A. 2012. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect. Immun. 80, 2019-2025. 

  39. Li, C., Bakker, R. G., Motaleb, M. A., Sartakova, M. L., Cabello, F. C. and Charon, N. W. 2002. Asymmetrical flagellar rotation in Borrelia burgdorferi nonchemotactic mutants. Proc. Natl. Acad. Sci. USA. 99, 6169-6174. 

  40. Liao, S., Sun, A., Ojcius, D. M., Wu, S., Zhao, J. and Yan, J. 2009. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC. Microbiol. 9, 253. 

  41. Lin, T., Gao L., Zhang, C., Odeh, E., Jacobs, M. B., Coutte, L., Chaconas, G., Philipp, M. T. and Norris, S. J. 2012. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7, e47532. 

  42. Liu, J., Lin, T., Botkin, D. J., McCrum, E., Winkler, H. and Norris, S. J. 2009. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J. Bacteriol. 191, 5026-5036. 

  43. Lux, R., Miller, J. N., Park, N. H. and Shi, W. 2001. Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola. Infect. Immun. 69, 6276-6283. 

  44. Moon, K. H., Hobbs, G. and Motaleb, M. A. 2016. Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete. Infect. Immun. 84, 1743-1752. 

  45. Moon, K. H., Zhao, X., Manne, A., Wang, J., Yu, Z., Liu, J. and Motaleb, M. A. 2016. Spirochetes flagellar collar protein FlbB has astounding effects in orientation of periplasmic flagella, bacterial shape, motility, and assembly of motors in Borrelia burgdorferi. Mol. Microbiol. 102, 336-348. 

  46. Motaleb, M. A., Corum, L., Bono, J. L., Elias, A. F., Rosa, P., Samuels, D. S. and Charon, N. W. 2000. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc. Natl. Acad. Sci. USA. 97, 10899-10904. 

  47. Motaleb, M. A., Liu, J. and Wooten, R. M. 2015. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease. Curr. Opin. Microbiol. 28, 106-113. 

  48. Motaleb, M. A., Miller, M. R., Li, C., Bakker, R. G., Goldstein, S. F., Silversmith, R. E., Bourret, R. B. and Charon, N. W. 2005. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J. Bacteriol. 187, 7963-7969. 

  49. Motaleb, M. A., Miller, M. R., Li, C. and Charon, N. W. 2007. Phosphorylation assays of chemotaxis two-component system proteins in Borrelia burgdorferi. Methods. Enzymol. 422, 438-447. 

  50. Motaleb, M. A., Pitzer, J. E., Sultan, S. Z. and Liu, J. 2011. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J. Bacteriol. 193, 3324-3331. 

  51. Motaleb, M. A., Sal, M. S. and Charon, N. W. 2004. The decrease in FlaA observed in a flaB mutant of Borrelia burgdorferi occurs posttranscriptionally. J. Bacteriol. 186, 3703-3711. 

  52. Motaleb, M. A., Sultan, S. Z., Miller, M. R., Li, C. and Charon, N. W. 2011. CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate. J. Bacteriol. 193, 3332-3341. 

  53. Muff, T. J. and Ordal, G. W. 2007. The CheC phosphatase regulates chemotactic adaptation through CheD. J. Biol. Chem. 282, 34120-34128. 

  54. Murray, T. S. and Shapiro, E. D. 2010. Lyme disease. Clin. Lab. Med. 30, 311-328. 

  55. Novak, E. A., Sekar, P., Xu, H., Moon, K. H., Manne, A., Wooten, R. M. and Motaleb, M. A. 2016. The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell. Microbiol. 18, 1782-1799. 

  56. Novak, E. A., Sultan, S. Z. and Motaleb, M. A. 2014. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 4, 56. 

  57. Ohnishi, J., Piesman, J. and de Silva, A. M. 2001. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc. Natl. Acad. Sci. USA. 98, 670-675. 

  58. Pal, U., Li, X., Wang, T., Montgomery, R. R., Ramamoorthi, N., Desilva, A. M., Bao, F., Yang, X., Pypaert, M., Pradhan, D., Kantor, F. S., Telford, S., Anderson, J. F. and Fikrig, E. 2004. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457-468. 

  59. Park, S. Y., Lowder, B., Bilwes, A. M., Blair, D. F. and Crane, B. R. 2006. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc. Natl. Acad. Sci. USA. 103, 11886-11891. 

  60. Pitzer, J. E., Sultan, S. Z., Hayakawa, Y., Hobbs, G., Miller, M. R. and Motaleb, M. A. 2011. Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect. Immun. 79, 1815-1825. 

  61. Porter, S. L., Wadhams, G. H. and Armitage, J. P. 2011. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153-165. 

  62. Radolf, J. D., Caimano, M. J., Stevenson, B. and Hu, L. T. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87-99. 

  63. Rollend, L., Fish, D. and Childs, J. E. 2013. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks. Tick. Borne. Dis. 4, 46-51. 

  64. Rosa, P. A., Tilly, K. and Stewart, P. E. 2005. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat. Rev. Microbiol. 3, 129-143. 

  65. Rosey, E. L., Kennedy, M. J. and Yancey, R. J. Jr. 1996. Dual flaA1 flaB1 mutant of Serpulina hyodysenteriae expressing periplasmic flagella is severely attenuated in a murine model of swine dysentery. Infect. Immun. 64, 4154-4162. 

  66. Sal, M. S., Li, C., Motalab, M. A., Shibata, S., Aizawa, S. and Charon, N. W. 2008. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J. Bacteriol. 190, 1912-1921. 

  67. Sanchez, J. L. 2015. Clinical manifestations and treatment of lyme disease. Clin. Lab. Med. 35, 765-778. 

  68. Sanjuan, E., Esteve-Gassent, M. D., Maruskova, M. and Seshu, J. 2009. Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect. Immun. 77, 5149-5162. 

  69. Sapi, E., Kaur, N., Anyanwu, S., Luecke, D. F., Datar, A., Patel, S., Rossi, M. and Stricker, R. B. 2011. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug. Resist. 4, 97-113. 

  70. Sarkar, M. K., Paul, K. and Blair, D. 2010. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 107, 9370-9375. 

  71. Schwan, T. G. and Piesman, J. 2000. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J. Clin. Microbiol. 38, 382-388. 

  72. Shih, C. M., Chao, L. L. and Yu, C. P. 2002. Chemotactic migration of the Lyme disease spirochete (Borrelia burgdorferi) to salivary gland extracts of vector ticks. Am. J. Trop. Med. Hyg. 66, 616-621. 

  73. Smith, R. P., Schoen, R. T., Rahn, D. W., Sikand, V. K., Nowakowski, J., Parenti, D. L., Holman, M. S., Persing, D. H. and Steere, A. C. 2002. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann. Intern. Med. 136, 421-428. 

  74. Sourjik, V. and Wingreen, N. S. 2012. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell. Biol. 24, 262-268. 

  75. Steere, A. C., Duray, P. H. and Butcher, E. C. 1988. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis. Rheum. 31, 487-495. 

  76. Steere, A. C., Gross, D., Meyer, A. L. and Huber, B. T. 2001. Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J. Autoimmun. 16, 263-268. 

  77. Sultan, S. Z., Manne, A., Stewart, P. E., Bestor, A., Rosa, P. A., Charon. N. W. and Motaleb, M. A. 2013. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect. Immun. 81, 2012-2021. 

  78. Sultan, S. Z., Pitzer, J. E., Boquoi, T., Hobbs, G., Miller, M. R. and Motaleb, M. A. 2011. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect. Immun. 79, 3273-3283. 

  79. Sultan, S. Z., Pitzer, J. E., Miller, M. R. and Motaleb, M. A. 2010. Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol. Microbiol. 77, 128-142. 

  80. Sultan, S. Z., Sekar, P., Zhao, X., Manne, A., Liu, J., Wooten, R. M. and Motaleb, M. A. 2015. Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infect. Immun. 83, 1765-1777. 

  81. Sze, C. W. and Li, C. 2011. Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi. Infect. Immun. 79, 1270-1279. 

  82. Sze, C. W., Morado, D. R., Liu, J., Charon, N. W., Xu, H. and Li, C. 2011. Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Mol. Microbiol. 82, 851-864. 

  83. Sze, C. W., Zhang, K., Kariu, T., Pal, U. and Li, C. 2012. Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect. Immun. 80, 2485-2492. 

  84. van Dam, A. P., Kuiper, H., Vos, K., Widjojokusumo, A., de Jongh, B. M., Spanjaard, L., Ramselaar, A. C., Kramer, M. D. and Dankert, J. 1993. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 17, 708-717. 

  85. van Leeuwenhoek, A. 1684. An abstract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. Containing some microscopical observations, about animals in the scurf of the teeth, the substance call'd worms in the nose, the cuticula consisting of scales. Philos. Trans. 14, 568-574. 

  86. Xu, H., Raddi, G., Liu, J., Charon, N. W. and Li, C. 2011. Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. J. Bacteriol. 193, 2652-2656. 

  87. Xu, H., Sultan, S., Yerke, A., Moon, K. H., Wooten, R. M. and Motaleb, M. A. 2017. Borrelia burgdorferi CheY2 is dispensable for chemotaxis or motility but crucial for the infectious life cycle of the spirochete. Infect. Immun. 85, e00264-16. 

  88. Xue, F., Yan, J. and Picardeau, M. 2009. Evolution and pathogenesis of Leptospira spp.: lessons learned from the genomes. Microbes Infect. 11, 328-333. 

  89. Zhang, K., Liu, J., Tu, Y., Xu, H., Charon, N. W. and Li, C. 2012. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol. Microbiol. 85, 782-794. 

  90. Zhao, X., Norris, S. J. and Liu, J. 2014. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53, 4323-4333. 

  91. Zhao, X., Zhang, K., Boquoi, T., Hu, B., Motaleb, M. A., Miller, K. A., James, M. E., Charon, N. W., Manson, M. D., Norris, S. J., Li, C. and Liu, J. 2013. Cryoelectron tomog raphy reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA. 110, 14390-14395. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로