$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

가족 유사성 접근법을 적용한 물체의 빠르기 주제의 융합지식 구성 연구
Constructing Convergence Knowledge on Velocity with Family Resemblance Approach 원문보기

초등과학교육 = Journal of Korean elementary science education, v.37 no.2, 2018년, pp.188 - 205  

이수아 (서울교육대학교) ,  전영석 (서울교육대학교)

Abstract AI-Helper 아이콘AI-Helper

For STEM education science teachers usually choose topics which are related to both science and other disciplinary contents. Nevertheless it is not clear for the teachers to adopt what kind of criteria for their choices. Interdisciplinary teaching is not a mixture of science content with another one...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
융합이란 무엇인가? 과학과 타 교과의 융합적 과학교육 연구 사례들을 통해 우리가 찾을 수 있는 시사점은 융합의 대상이 되는 각 교과들의 어떤 특성이 융합과 관련된 것인지를 규명해야 한다는 것이다. 즉, 학습의 결과 물로서 여러 교과의 지식이 녹아들어 새로운 지식과 경험 등을 창조하는 능력이나 행위를 융합이라고 정의한다면(Kwon & Kang, 2008), 과학과 타 교과 간의 융합지식을 구성할 때 서로 다른 교과의 지식을 그냥 섞는 것이 아니라, 어떤 특성에 따라 어떤 부분을 어떻게 융합할 것인가에 대한 이론적 토대를 갖추고 있어야 한다. 이에 이 연구에서는 과학 교과와 타 교과 간의 융합을 위한 지점을 설정하기 위한 이론적 근거로서 과학의 본성을 새로운 관점에서 재규명하고자 했던 Irzik and Nola(2011) 의 가족 유사성 접근(family resemblance approach)을 도입해 보고자 한다.
과학 수업에서 추구하는 것은 무엇인가? , 2018). 과학 수업에서 추구하는 것은 과학 지식을 이해하는 것뿐만 아니라, 과학적인 증거를 바탕으로 자연 현상을 설명하기 위해 추론하고, 과학적 실행과 담화에 참여할 수 있는 능력을 기르는 것이다(NRC, 2007). 이러한 주장은 깊이 있는 과학 탐구를 수행하기 위해서는 다방면의 능력이 요구되며, 이를 위해 과학 수업에 융합적 접근이 필요함을 말해 준다 (Basista & Mathews, 2002; Venville et al.
STEAM 프로그램을 적용할 시 주의할 점은 무엇인가? (2014)은 각각 STEAM 프로그램을 개발하여 적용한 후, 융합교육이 학생들의 학습동기, 학업성취, 창의성에 긍정적 효과가 있음을 제시하였다. 그러나 STEAM 학습의 주제가 개념 이해보다는 서로 다른 교과에서 추출한 여러 가지 활동 참여만을 강조하고, 수업에서 다루는 개념의 수준이 일상적 개념 이해 정도에 그친다면, 융합의 효과보다는 융합적 활동에 포함된 피상적인 정보만 습득하게 될 위험이 있다는 보고도 있었다(Grossman et al., 2000; Lee & Kim, 2013).
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353-374. 

  2. Bae, J. H., Yun, B. H. & Kim, J. S. (2013). The effects of science lesson applying STEAM education on science learning motivation and science academic achievement of elementary school students. Journal of Korean Elementary Science Education, 32(4), 557-566. 

  3. Basista, B., & Mathews, S. (2002). Integrated science and mathematics professional development program. School Science and Mathematics, 102(7), 359-370. 

  4. Brown, N. J. S., Furtak, E. M., Timms, M., Nagashima, S. O. & Wilson, M. (2010). The evidence-based reasoning framework: Assessing scientific reasoning. Educational Assessment, 15(3-4), 123-141. 

  5. Carrier, S., Wiebe, E. N., Gray, P. & Teachout, D. (2011). BioMusic in the classroom: Interdisciplinary elementary science and music curriculum development. School Science and Mathematics, 111(8), 425-434. 

  6. Charlene, M. C., William, B. W., Alexa, S. & John, A. (1999). A literature review of science and mathematics integration: Bowling green. School Science and Mathematics, 99(8), 421-430. 

  7. Drake, S. M. & Burns, R. C. (2004). Meeting standards through integrated curriculum. Association for Supervision and Curriculum Development, p. 181. 

  8. Duran, E., Ballone Duran, L. & Worch, E. A. (2009). Papier-mache animals: An integrating theme for elementary classroom. Science Education Review, 8(1), 19-29. 

  9. Erduran, S. & Dagher, Z. R. (2014). Reconceptualizing nature of science for science education. The Netherlands: Springer. 

  10. Fensham, P. J., Gunstone, R. F. & White, R. T. (1994). The content of science: A constructivist approach to its teaching and learning. Washington, DC: The Falmer Press. 

  11. Fogarty, R. (1991). Ten ways of curriculum integration. Educational Leadership, 61-65. 

  12. Grossman, P., Wineburg, S. & Beers, S. (2000). When theory meets practice in the world of school. In S. Wineburg & P. Grossman. (Eds.), Interdisciplinary curriculum: Challenges to implementation (pp. 1-16). New York: Teachers College Press. 

  13. Han, Y. W. & Lee, W. K. (2005). An effect of integrated science inquiry learning method through literature materials on the elementary science learning. Journal of Korean Elementary Science Education, 24(1), 9-20. 

  14. Hong, S. (2015). Exploratory research for measuring epistemological beliefs on the convergence knowledge of science and art. Unpublished doctoral dissertation. Kyung Hee University. 

  15. Irzik, G. & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7), 591-607. 

  16. Jung, H. & Jhun, Y. (2015). An analysis on the students' achievement in the 'Speed of Objects' chapter based on the integrated science and mathematics classes for elementary school students. Journal of Korean Elementary Science Education, 34(4), 372-381. 

  17. Kaya, E. & Erduran, S. (2016). From FRA to RFN: How the family resemblance approach can be transformed for science curriculum analysis on nature of science. Science & Education, 25(9), 1115-1133. 

  18. Kim, D. H., Ko, D. G., Han, M. J. & Hong, S. H. (2014). The effects of science lessons applying STEAM education program on the creativity and interest levels of elementary students. Journal of Korean Association for Science Education, 34(1), 43-54. 

  19. Kwak, Y., Son, J. W. & Kim, M. Y. (2014). Research on ways to improve science curriculum focused on key competencies and creative fusion education. Journal of Korean Association for Science Education, 34(3), 321-330. 

  20. Kwon, S. H. & Kang, K. H. (2008). Practical approach to integrated curriculum of undergraduate liberal arts education-Focused on Hanyang University. Korean Journal of General Education, 2(2), 7-24. 

  21. Lee, S., Jhun, Y., Hong, J., Shin, Y., Choi, J. & Lee, I. (2007). Difficulties experienced by elementary school teachers in science classes. Journal of Korean Elementary Science Education, 26(1), 97-107. 

  22. Lee, K. J. & Kim, K. J. (2012). Exploring the meanings and practicability of Korea STEAM education. The Journal of Elementary Education, 25(3), 55-81. 

  23. Lee, S. W. (2015). Philosophical issues of climate science: Epistemological conditions for successful interdisciplinary research and ethical implications. The Korean Journal for the Philosophy of Science, 18(1), 151-180. 

  24. Lee, S. & Choi, J. (2013). A study of 'Justification' as a principle in the integration of Korean language and mathematics - By analyzing textbooks according to Toulmin's argumentation -. The Journal of Curriculum and Evaluation, 16(3), 1-25. 

  25. Lim, Y. N. (2012). Problems and ways to improve Korean STEAM education based on integrated curriculum. The Journal of Elementary Education, 25(4), 53-80. 

  26. Ministry of Education (2015). General guidelines of elementary and secondary school curriculum. Ministry of Education Notice No. 2015-74. 

  27. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington, DC: National Academy Press. 

  28. Park, Y. S., Ku, H. R., Moon, J. E., Ahn, S. h., Yoo, B. G., Lee, K. Y., Lee, S. H., Lee, S. K., Ju, M. K., Cha, Y. K. & Ham, S. (2013). Current status and remaining challenges of STEAM : An analysis from the perspective of Yungbokhap education. The Journal of Curriculum Studies, 31(1), 159-186. 

  29. Riquarts, K. & Hansen, K. H. (1998). Collaboration among teachers, researchers and in-service trainers to develop an integrated science curriculum. JCS, 30(6), 661-676. 

  30. Santau, A. O. & Ritter, J. K. (2013). What to teach and how to teach it: Elementary teachers' views on teaching inquiry-based, interdisciplinary science and social studies in urban settings. The New Educator, 9(4), 255-286. 

  31. Shin, Y., & Han, S. (2011). A study of the elementary school teachers' perception in STEAM (science, technology, engineering, arts, mathematics) Journal of Korean Elementary Science Education, 30(4), 514-523. 

  32. Venville, G. J., Wallace, J., Rennie, L. J. & Malone, J. A. (2002). Curriculum integrations: Eroding the high ground of science as a school subject? Studies in Science Education, 37(1), 43-83. 

  33. Wittgenstein, L. (1958). Philosophical investigations. Oxford: Blackwell. 

  34. Yakman, G. (2008). ST $\Sigma$ @M education: an overview of creating a model of integrative education. https://www.iteea.org/File.aspx?id86752&v75ab076a. Accessed Date: Nov. 08. 2016. 

  35. You, H. S. (2017). Why teach science with an interdisciplinary approach: History, trends, and conceptual frameworks. Journal of Education and Learning, 6(4), 66-77. 

  36. You, H. S., Marshall, J. A. & Delgado, C. (2018). Assessing students’ disciplinary and interdisciplinary understanding of global carbon cycling. Journal of Research in Science Teaching, 55(3), 377-398. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로