$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

Smart structures and systems, v.21 no.6, 2018년, pp.727 - 740  

Jimenez-Alonso, Javier F. (Department of Building Structures and Geotechnical Engineering, Universidad de Sevilla) ,  Saez, Andres (Department of Continuum Mechanics and Structural Analysis, Universidad de Sevilla)

Abstract AI-Helper 아이콘AI-Helper

Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency...

주제어

참고문헌 (41)

  1. Arora, J.S. (2007), Optimization of Structural and Mechanical Systems, World Scientific Publishing Co. Pte. Ltd, Singapore. 

  2. Ansys (2017), Mechanical Release http://www.ansys.com/ 

  3. Asami, T., Nishihara, O. and Baz, A.M. (2002), "Analytical solutions to $H{\infty}$ and H2 optimization of dynamic vibration absorbers attached to damped linear systems", J. Vib. Acoust., 124(2), 284-295. 

  4. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. 

  5. Bortoluzzi, D., Casciati, S., Elia, l. and Faravelli, L. (2015), "Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge", Smart Struct. Syst., 16(3), 459-478. 

  6. Bucher, C. (2009), Computational Analysis of Randomness in Structural Mechanics, CRC Press Taylor & Francis Group, London, United Kingdom. 

  7. Butz, C.H., Heinemeyer, C.H.; Goldack, A., Keil, A., Lukic, M., Caetano, E. and Cunha, A. (2007), "Advanced Load Models for Synchronous Pedestrian Excitation and Optimised Design Guidelines for Steel Footbridges (SYNPEX)". RFCS-Research Project RFS-CR-03019. 

  8. Caetano, E., Cunha, A., Magalhaes, F. and Moutinho, C. (2010), "Studies for controlling human-induced vibration of the Pedro e Ines footbridge, Portugal. Part 2: Implementation of tuned mass dampers", Eng. Struct., 32(4), 1082-1091. 

  9. Caetano, E., Cunha, A., Raoul, J. and Hoorpah, W. (2009), Footbridge Vibration Design, CRC Press Taylor and Francis Group, Leuden, The Netherlands. 

  10. Casciati, S. (2016), "Human induced vibration vs. cable-stay footbridge deterioration", Smart Struct. Syst., 18(1), 17-29. 

  11. Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), "Toward a paradigm for civil structural control", Smart Struct. Syst., 14 (5), 981-1004. 

  12. Clough, R.W. and Penzien, J. (1993), Dynamics of structures, McGraw-Hill Book Company, New York, United States. 

  13. Connor, J. (2003), Introduction to Structural Motion Control, Prentice Hall, Pearson Education, Inc., New Jersey, United States. 

  14. Crandall, S.H. and Mark, W.D. (1963), Random Vibration in Mechanical Systems, Academic Press, New York, United States. 

  15. Dallard, P., Fitzpatrick, A.J., Le Bourva, S., Low, A., Smith, R., Wilford, M. and Flint, A. (2001), "The London Millenium Footbridge", Struct. Engineer, 79(22), 17-33. 

  16. Den Hartog, J.P. (1956), Mechanical Vibrations, 4th ed., McGraw-Hill, New York, United States. 

  17. Engen, M., Hendriks, M., Kohler, J., O verli, J.A. and A ldstedt, E. (2017), "A quantification of the modelling uncertainty of nonlinear finite element analyses of large concrete structures", Struct. Saf., 64: 1-8. 

  18. Hu, W.H., Caetano, E. and Cunha, A. (2013), "Structural health monitoring of a stress-ribbon footbridge", Eng. Struct., 57: 578-593. 

  19. Jimenez-Alonso J.F. and Saez, A. (2017a), "Motion-based design of a slender steel footbridge and assessment of its dynamic behaviour", Int. J.Steel Struct., 17(4), 1459-1470. 

  20. Jimenez-Alonso J.F. and Saez, A. (2017b), "Robust optimum design of TMDs to mitigate pedestrian induced vibrations using multi-objective genetic algorithms", Struct. Eng. Int., 4,492-501. 

  21. Koh Ghee, C. and Perry, M.C. (2010), Structural Identification and Damage Detection using Genetic Algorithms, CRC Press, Taylor and Francis Group, London, United Kingdom. 

  22. Liang, Q.Q. (2007), "Performance-based optimization: A review", Adv. Struct. Eng., 10(6), 739-753. 

  23. Lievens, K., Lombaert, G., De Roeck, G. and Van den Broeck, P. (2016), "Robust design of a TMD for the vibration serviceability of a footbridge", Eng. Struct., 123, 408-418. 

  24. Marano, G.C. and Cuaranta, G. (2009), "Robust optimum criteria for tuned mass dampers in fuzzy environments", Appl. Soft Comput., 9(4), 1232-1243. 

  25. Marano, G.C., Greco, R. and Sgobba, S. (2010), "A comparison between different robust optimum design approaches: Application to tuned mass dampers", Probabilist. Eng. Mech., 25(1), 108-118. 

  26. Matlab, R. (2017), http://www.mathworks.com/. 

  27. Mirzai, N.M., Zahrai, S.M. and Bozorgi, F. (2017), "Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity", Struct. Eng. Mech., 63(2), 147-160. 

  28. Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: Recent developments", Smart Struct. Syst., 13(2), 173-176. 

  29. Nocedal, J. and Wright, S.J. (1999), Numerical Optimization, Springer, New York, United States. 

  30. Ramezani, M., Akbar Bathaei, A. and Seyed Mehdi Zahrai, S.M (2017), "Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings", Smart Struct. Syst., 19(3), 269-277. 

  31. Salvi, J. and Rizzi, E. (2016), "Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations", Smart Struct. Syst., 17(2), 231-256. 

  32. Setra (2006), Guide methodologique passerelles pietonnes (Technical Guide Footbridges: Assessment of vibration behaviour of footbridge under pedestrian loading). 

  33. Soong, T.T. and Costantinou M.C. (1994), Passive and active control structural vibration control in civil engineering, Springer, State University of New York at Buffalo. Buffalo, United States. 

  34. Soria J.M., Diaz I, Garcia-Palacios, J. and Iban N. (2016), "Vibration monitoring of a steel-plated stress-ribbon footbridge: uncertainties in the modal estimation", J. Bridge Eng. - ASCE, 21(8), C5015002. 

  35. Van Nimmen, K., Verbeke, P., Lombaert, G. and De Roeck, G. (2016), "Numerical and experimental evaluation of the dynamic performance of a footbridge with tuned mass dampers", J. Bridge Eng. - ASCE, 21(8), C4016001. 

  36. Venuti, F.V., Racic, V. and Corbetta, A. (2016), "Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges", J. Sound Vib., 379, 245-263. 

  37. Wang, X., Gao, X.Z. and Zenger, K. (2015), An Introduction to Harmony Search Optimization Method, SpringerBriefs in Applied Sciences and Technology, Dordrecht, The Netherlands. 

  38. Wang, Z. and Chen, W. (2017), "Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation", Struct. Saf., 64, 76-86. 

  39. Weber, F., Feltrin, G. and Hult, O. (2006), Guidelines for structural control, Structural Engineering Research Laboratory, Swiss Federal Laboratories for Materials Testing and Research, Dubendorf, Switzerland. 

  40. Zang C., Friswell M.I. and Mottershead J.E. (2005), "A review of robust optimal design and its application in dynamics", Comput. Struct., 83, 315-326. 

  41. Zivanovic, S., Pavic A. and Reynolds P. (2007), "Finite element modelling and updating of a lively footbridge: The complete process", Eng. Struct., 301(1-2), 126-145. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로