$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Marine Algae and Their Potential Application as Antimicrobial Agents 원문보기

한국식품위생안전성학회지 = Journal of food hygiene and safety, v.33 no.3, 2018년, pp.151 - 156  

Charway, Grace N.A. (Inland and Aquaculture Division, Fisheries Commission, Ministry of Fisheries and Aquaculture Development) ,  Yenumula, Padmini (Department of Food Science and Technology, Pukyong National University) ,  Kim, Young-Mog (Inland and Aquaculture Division, Fisheries Commission, Ministry of Fisheries and Aquaculture Development)

초록

해양생물에는 육상생물자원에서는 존재하지 않는 다양한 화합물이 많이 존재하는데 이들 화합물은 새로운 치료제 및 대체 치료법을 개발하는데 유용하게 이용될 수 있다. 현재 해조류의 다양한 생리활성에 대한 연구가 진행되고 있으며 최근에는 여러 병원성 및 인체 감염균에 대한 항균효과를 나타내어 신약개발의 보고로 다양한 연구가 진행이 되고있다. 즉, 해조류는 천연물신약 또는 새로운 치료제 개발에 중요한 생물자원이다.

Abstract AI-Helper 아이콘AI-Helper

The world is becoming overwhelmed with widespread diseases as antibiotic resistance increases at an alarming rate. Hence, there is a demanding need for the discovery and development of new antimicrobial drugs. The ocean is gifted with many organisms like phytoplankton, algae, sponges, cnidarians, br...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Recently, a great deal of interest has been expressed regarding marine algae as potential antiviral agents. This contribution focuses on anti-herpes virus therapeutic agents derived from marine algae which are considered as novel functional ingredients in anti-herpes virus therapy. Sulfated polymannuroguluronate (SPMG) a polysaccharide with an average molecular weight of 8.
본문요약 정보가 도움이 되었나요?

참고문헌 (54)

  1. Donia M., Hamann M.T.: Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis., 6, 338-348 (2003). 

  2. Lie J., Zhou J.: A marine natural product database. J. Chem. Inf. Comput. Sci., 42, 742-748 (2002). 

  3. Barbosa M., Valentao P., Andrade P.B.: Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar. Drugs, 12, 4934-4972 (2014). 

  4. Farias W.R., Valente A.P., Pereira M.S., Mourao P.A.: Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladiaoccidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem., 275, 29299-2307 (2000). 

  5. Nuijen B., Bouma M., Talsma H., Manada C., Jimeno J.M., Lopez-Lazaro L., Bult A., Beijnen J.H.: Development of a lyophilized parenteral pharmaceutical formulation of the investigational polypeptide marine anticancer agent kahalalide F. Drug Dev. Ind. Pharm., 27, 767-780 (2000). 

  6. Palermo J.A., Flower B.P., Seldes A.M.: Chondriamides A and B new indolic metabolites from red algae Chondria sp. Tetrahedron Lett., 33, 3097-3100 (1992). 

  7. Davyt D., Entz W., Fernandez R., Mariezcurrena R., Mombru A.W., Saldana J., Dominguez L., Coll J., Manta E.: A new indole derivative from the red alga Chondriaatropurpurea. Isolation, structure determination, and anthelmintic activity. J. Nat. Prod., 61, 1560-1563 (1998). 

  8. Hidari K.I., Takahashi N., Arihara M., Nagaoka M., Morita K., Suzuki T.: Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 376, 91-95 (1981). 

  9. Shibata T., Fujimoto K., Nagayama K., Yamaguchi K., Nakamura T.: Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Tech., 37, 703-709 (2002). 

  10. Bernardi G. and Springer G.F.: Properties of highly purified fucan. J. Biol. Chem., 237, 75-80 (1962). 

  11. Yuan H., Song J., Li X., Li N., Dai J.: Immunomodulation and antitumor activity of ${\kappa}$ -carrageenan oligosaccharides. Cancer Lett., 243, 228-234 (2006). 

  12. Carter G.T., Rinehart K.L. Jr., Li L.H. Kuentzel S.L., Connor J.L.: Brominated indoles from Laurenciabrongniartii. Tetrahedron Lett., 46, 4479-4482 (1978). 

  13. Takamatsu S., Hodges T.W., Rajbhandari I., Gerwick W.H., Hamann M.T., Nagle D.G.: Marine natural products as novel antioxidant prototypes. J. Nat. Prod., 66, 605-608 (2003). 

  14. Woolner V.H., Jones C.M., Field J.J., Fadzilah N.H., Munkacsi A.B., Miller J.H., Keyzers R.A., Northcote P.T.: Polyhalogenated indoles from the red alga Rhodophyllis-membranacea: The first isolation of bromo-chloro-iodo secondary metabolites. J. Nat. Prod., 79, 463-469 (2016). 

  15. de Sousa A.P.A., Torres M.R., Pessoa C., deMoraes M.O., Filho F.D.R., Alves A.P.N.N., Costa-Lotufo L.V.: In vivo growth-inhibition of sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym., 69, 7-13 (2007). 

  16. Bourgougnon N., Lahaye M., Quemener B., Chermann J.C., Rimbert M., Cormaci M., Furnari G., Komprobst J.M.: Annual variation in composition and in vitro anti-HIV-1 activity of the sulfated glucuronogalactan from Schizymeniadubyi (Rhodophyta, Gigartinales). J. Appl. Phycol., 8, 155-161 (1996). 

  17. Gerwick W.H., Fenical W.: Ichthyotoxic and cytotoxic metabolites of the tropical brown alga, Stypopodiumzonale. J. Org. Chem., 46, 22-27 (1981). 

  18. Rajasulochana P., Krishnamoorthy P., Dhamotharan R.: Isolation, identification of bromophenol compound and antibacterial activity of Kappaphycus sp. Int. J. Pharm. Bio. Sci., 3, 173-186 (2012). 

  19. Torres F.A.E., Passalacqua T.G., Velasquez A.M.A., Souza R.A., Colepicolo P., Graminha M.A.S.: New drugs with antiprotozoal activity from marine algae: a review. Rev. Bras. Farmacog., 24, 265-276 (2014). 

  20. Perez M.J., Falque E., Dominguez H.: Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 14, E52 (2016). 

  21. Guedes A.C., Barbosa C.R., Helena M.A., Claudia I.P., Francisco, X.M.: Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int. J. Food Sci. Technol., 46, 862-870 (2011). 

  22. Eom S.H., Kim Y.M., Kim S.K.: Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol., 50, 3251-3255 (2012). 

  23. Cavallo R.A., Acquaviva M.I., Stabili L., Cecere E., Petrocelli A., Narracci M.: Antibacterial activity of marine macroalgae against fish pathogenic Vibrio species. Cent. Eur. J. Biol., 8, 646 (2013). 

  24. Demirel Z., Yilmaz-Koz F.F., Karabay-Yavasoglu U.N., Ozdemir G., Sukatar A.: Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. J. Ser. Chem. Soc., 74, 619-628 (2009). 

  25. Bhagavathy S., Sumathi P., Jancy Sherene Bell I.: Green algae Chlorococcumhumicola a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed., 1, S1-7 (2011). 

  26. Plaza M., Santoyo S., Jaime L, Garcia-Blairsy R.G., Herrero M., Senorans F.J., Ibanez E.: Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal., 51, 450-455 (2010). 

  27. Manilal A., Sujith S., Selvin J., Shakir C., Seghal G.: Antibacterial activity of Falkenbergiahillebrandii (Born) from the Indian coast against human pathogens. Int. J. Exp. Bot., 78, 161-166, (2009). 

  28. Etahiri S., Bultel-Ponce V., Caux C., Guyot M.: New bromoditerpenes from the red alga Sphaerococcuscoronopifolius. J. Nat. Prod., 64, 1024-1027 (2001). 

  29. Cueto M., Jensen P.R., Kauffman P., Fenical W., Lobkovsky E., Clardy J.: Pestalone a new antibiotic produced by a marine fungus in response to bacterial challenge. J. Nat. Prod., 64, 1444-1446 (2001). 

  30. Perez R.M., Avila J.G., Perez S., Martinez A., Martinez G.: Antimicrobial activity of some American algae. J. Ethnopharmacol., 29, 111-116 (1990). 

  31. Albuquerque M.R., Takaki C., Koening M.L.: Detection of antimicrobial activity in marine seaweeds. Rev.Inst. Antibiot. Univ. Fed. Pernambuco Recife., 21, 127-138 (1983). 

  32. Choi J.G., Kang O.H., Brice O.O., Lee Y.S., Chae H.S., Oh Y.C., Sohn D.H., Park H., Choi H.G., Kim S.G., Shin D.W., Kwon D.Y.: Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog. Dis., 7, 435-441 (2010). 

  33. Eom S.H., Lee D.S., Kang Y.M., Son K.T., Jeon Y.J., Kim Y.M.: Application of yeast Candida utilis to ferment Eiseniabicyclis for enhanced antibacterial effect. Appl. Biochem. Biotechnol., 171, 569-582 (2013). 

  34. Alarif W.M., Al-Lihaibi S.S., Ayyad S.E., Abdel-Rhman M.H., Badria F.A.: Laurene-type sesquiterpenes from the Red Sea red alga Laurenciaobtusa as potential antitumoreantimicrobial agents. Eur. J. Med. Chem., 55, 462-466 (2012). 

  35. Lee M.H., Lee K.B., Oh S.M., Lee B.H., Chee H.Y.: Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. Food Sci. Biotechnol., 53, 504-507 (2010). 

  36. da Silva Machado F.L., Pacienza-Lima W., Rossi-Bergmann B., de Souza Gestinari L.M., Fujii M.T. de Paula J.C., Costa S.S., Lopes N.P., Kaiser C.R., Soares, A.R.: Antileishmanialsesquiterpenes from the brazilian red alga Laurenciadendroidea. Planta Med., 77, 733-735 (2011). 

  37. dos Santos A.O., Britta E.A., Bianco E.M., Ueda-Nakamura T., Filho B.P., Pereira R.C., Nakamura C.V.: 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpuscervicornis as antileishmanial agent. Mar. Drugs, 9, 2369-2383 (2011). 

  38. dos Santos A.O., Veiga-Santos P., Ueda-Nakamura T., Sudatti D.B., Bianco E.M., Pereira R.C., Nakamura C.V.: Effect of elatol, isolated from red seaweed Laurenciadendroidea, on Leishmaniaamazonensis. Mar. Drugs, 8, 2733-2743 (2010). 

  39. Soares D.C., Calegari-Silva T.C., Lopes U.G., Teixeira V.L., de Palmer Paixao I.C.N., Cirne-Santos C., Bou-Habib D.C., Saraiva E.M.: Dolabelladienetriol, a compound from Dictyotapfaffii algae, inhibits the infection by Leishmaniaamazonensis. PLOS Neglect. Trop. D., 6, e1787 (2012) 

  40. Veiga-Santos P., Pelizzaro-Rocha K.J., Santos A.O., Ueda-Nakamura T., Dias Filho B.P., Silva S.O., Sudatti D.B., Bianco E.M., Pereira R.C., Nakamura C.V.: In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurenciadendroidea. Parasitology, 137, 1661-1670 (2010). 

  41. Vonthron-Senecheau C., Kaiser M., Devambez I., Vastel A., Mussio I., Rusig A.M.: Antiprotozoal activities of organic extracts from French marine seaweeds. Mar. Drugs, 9, 922-933 (2011). 

  42. Galle J.B., Attioua B., Kaiser M., Rusig A.M., Lobstein A., Vonthron-Senecheau C.: Eleganolone, a diterpene from the French marine alga Bifurcariabifurcata inhibits growth of the human pathogens Trypanosoma brucei and Plasmodium falciparum. Mar. Drugs, 11, 599-610 (2013). 

  43. Suzgec-Selcuk S., Mericli A.H., Guven K.C., Kaiser M., Casey R., Hingley-Wilson S., Lalvani A., Tasdemir D.: Evaluation of Turkish seaweeds for antiprotozoal, antimycobacterial and cytotoxic activities. Phytother. Res., 25, 778-783 (2011). 

  44. de Felicio R., de Albuquerque S., Young M.C., Yokoya N.S., Debonsi H.M.: Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychiatenella J. Agardh (Rhodomelaceae, Ceramiales). J. Pharm. Biomed. Anal., 52, 763-769 (2010). 

  45. Richards J.T., Kern E.R., Glasgow L.A., Overall J.C. Jr., Deign E.F., Hatch M.T.: Antiviral activity of extracts from marine algae. Antimicrob. Agents Chemother., 14, 24-30 (1978). 

  46. Meiyu G., Fuchuan L., Xianliang X., Jing L., Zuowei Y., Huashi G.: The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV-1 rgp120 and CD4 molecule. Antiviral Res., 59, 127-135 (2003). 

  47. Witvrouw M., De Clercq E.: Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol., 29, 497-511 (1997). 

  48. Ponce N.M., Pujol C.A., Damonte E.B., Flores M.L., Stortz C.A.: Fucoidans from the brown seaweed Adenocystisutricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res., 338, 153-165 (2003). 

  49. Pujol C.A., Estevez J.M., Carlucci M.J., Ciancia M., Cerezo A.S., Damonte E.B.: Novel DL-galactan hybrids from the red seaweed Gymnogongrustorulosus are potent inhibitors of herpes simplex virus and dengue virus. Antivir. Chem. Chemother., 13, 83-89 (2002). 

  50. Schaeffer D.J., Krylov V.S.: Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol. Environ. Saf., 45, 208-227 (2000). 

  51. Thompson K.D.Dragar C.: Antiviral activity of Undariapinnatifida against herpes simplex virus. Phytother. Res., 18, 551-555 (2004). 

  52. Ono L., Wollinger W., Rocco I.M., Coimbra T.L., Gorin P.A., Sierakowski M.R.: In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res., 60, 201-208 (2003). 

  53. Talarico L.B., Pujol C.A., Zibetti R.G., Faria P.C., Noseda M.D., Duarte M.E., Damonte E.B.: The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res., 66, 103-110 (2005). 

  54. Beress A., Wassermann O., Tahhan S., BruhnT., Beress L., Kraiselburd E.N., Gonzalez L.V., de Motta G.E., Chavez P.I.: A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucusvesiculosus. J. Nat. Prod., 56, 478-488 (1993). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로