$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Performance Prediction of a Laser-guide Star Adaptive Optics System for a 1.6 m Telescope 원문보기

Current optics and photonics, v.2 no.3, 2018년, pp.269 - 279  

Lee, Jun Ho (Department of Optical Engineering, Kongju National University) ,  Lee, Sang Eun (Electro-Optics Research Center, LigNex1) ,  Kong, Young Jun (Electro-Optics Research Center, LigNex1)

Abstract AI-Helper 아이콘AI-Helper

We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 6 m telescope with a laser-guide star adaptive optics (AO) system. The AO system was designed based on the astronomical seeing conditions measured over a year at the Bohyun observatory, South Korea. Following an extensive investigation into the errors sources of the adaptive optics system with a sodium laser guide star, we concluded that we can achieve a Strehl ratio > 0.
  • 4µm) for NGS and LGS cases. The prediction considers a wide range of parameters and error sources, including the strength and profile of the atmospheric turbulence, the fitting error caused by the finite spatial resolutions of the wavefront sensor and deformable mirror, wavefront sensor noise propagating through the wavefront reconstruction algorithm, servo lag resulting from the finite bandwidth of the control loop, and the anisoplanatism for a given constellation of natural and/or laser guide stars [6-10].

대상 데이터

  • One of the site candidates for the 1.6 m telescope is the Bohyun observatory located at 36.1648°N and 128.977°E with altitude 1124 m.
  • The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. The AO system consists of a tip/ tilt secondary mirror, a deformable mirror, two scientific cameras (CCD and IR detector), a Shack-Hartman wavefront sensor, a laser guide star, and a data processing or control system (Fig.
  • 7 m. The AO system consists of a tip/ tilt secondary mirror, a deformable mirror, two scientific cameras (CCD and IR detector), a Shack-Hartman wavefront sensor, a laser guide star, and a data processing or control system (Fig. 1).
  • 6 m telescope. The AO system consists of a tip/tilt secondary mirror, a deformable mirror, two scientific cameras (CCD and IR detector), a Shack-Hartman wavefront sensor, a sodium laser, and a data processing or control system. The adaptive optics system set is installed on an optical bench located on one of the Nasmyth ports, as shown in Fig.
  • The telescope is an f/13.6 Nasmyth-Cassegrain telescope on an alt-azimuth mount, which is a simple two-axis mount for supporting and rotating an instrument about two perpendicular axes - one vertical and the other horizontal. As in the Cassegrain telescope, the light falls on a concave primary mirror and then is reflected toward a convex secondary mirror.
  • The telescope is equipped with a laser launch telescope with a sodium laser, an AO system set, and two scientific cameras (a CCD and an IR detector). The laser launch telescope with the laser head is mounted on the center frame, the laser electric control box is mounted on one of the Nasmyth platforms, and the optical bench including the AO system is set on the other Nasmyth port.
  • This paper first presents the system design of the AO system based on the seeing conditions measured at the Bohyun Observatory, South Korea, which is one of the telescope site candidates. We then investigate the imaging performance of the telescope in terms of the Strehl ratio predicted at four wave bands (V/I/J/K/L centered at 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993). 

  2. R. K. Tyson, Principles of Adaptive Optics (CRC Press, Boca Raton, FL, USA, 2015). 

  3. S. S. Olivier, D. T. Gavel, H. W. Friedman, C. E. Max, J. R. An, K. Avicola, B. J. Bauman, J. M. Brase, E. W. Campbell, C. J. Carrano, J. B. Cooke, G. J. Freeze, E. L. Gates, V. K. Kanz, T. C. Kuklo, B. A. Macintosh, M. J. Newman, E. L. Pierce, K. E. Waltjen, and J. A. Watson, "Improved performance of the laser guide star adaptive optics system at Lick Observatory," Proc. SPIE 3762, 2-7 (1999). 

  4. W. C. Rao, Y. Bo, C. Li, M. Li, X, Zhang, A. Zhang, C. Guan, L. Zhou, S. Chen, X. Hao, W. Ma, and Y. Zhang, "A sodium guide star adaptive optics system for the 1.8 meter telescope," Proc. SPIE 8447, 84474K (2012). 

  5. C. d'Orgeville and G. J. Fetzer, "Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness," Proc. SPIE 9909, 99090R (2016). 

  6. R. K. Tyson, "Adaptive optics system performance approximations for atmospheric turbulence correction," Opt. Eng. 29, 1165-1173 (1990). 

  7. D. T. Gavel, J. R. Morris, and R. G. Vernon, "Systematic design and analysis of laser-guide-star adaptive-optics systems for large telescopes," J. Opt. Soc. Am. A 11, 914-924 (1994). 

  8. B. W. Frazier, M. Smith, and R. K. Tyson, "Performance of a compact adaptive-optics system," Appl. Opt. 43, 4281-4287 (2004). 

  9. M. A. van Dam, D. Le Mignant, and B. A. Macintosh, "Performance of the Keck Observatory adaptive-optics system," Appl. Opt. 43, 5458-5467 (2004). 

  10. J. H. Lee, S. Shin, G. N. Park, H. Rhee, and H. Yang, "Atmospheric turbulence simulator for adaptive optics evaluation on an optical test bench," Curr. Opt. Photon. 1, 107-112 (2017). 

  11. J. H. Lee, B. C. Bigelow, D. D. Walker, A. P. Doel, and R. G. Bingham, "Why adaptive secondaries?," Publ. Astron. Soc. Pacific 112, 97-107 (2000). 

  12. E. Hecht, Optics (Addison Wesley, San Francisco, CA, USA 2002). 

  13. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Opt. Soc. Am. 56, 1372-1379 (1966). 

  14. F. Roddier, "The effects of atmospheric turbulence in optical astronomy," Prog. Opt. 19, 281-376 (1981). 

  15. F. Roddier, J. M. Gilli, and G. Lund, "On the origin of speckle boiling and its effects in stellar speckle interferometry," J. Opt. 13, 263-271 (1982). 

  16. D. P. Greenwood, "Bandwidth specification for adaptive optics system," J. Opt. Soc. Am. 67, 390-393 (1977). 

  17. G. Tyler, "Bandwidth considerations for tracking through turbulence," J. Opt. Soc. Am. 11, 358-367 (1994). 

  18. R. R. Parenti, "Adaptive optics for astronomy," Lincoln Lab. J. 5, 93-114 (1992). 

  19. J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. Lee, "Robotic SLODAR development for seeing evaluations at the Bohyunsan Observatory," Advanced Maui Optical and Space Surveillance Technologies Conference (2015). 

  20. R. W. Wilson, "SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor," Mon. Not. R. Astron. Soc. 337, 103-108 (2002). 

  21. T. Butterley, R. W. Wilson, and M. Sarazin, "Determination of the profile of atmospheric optical turbulence strength from SLODAR data," Mon. Not. R. Astron. Soc. 369, 835-845 (2006). 

  22. J. Vernin and F. Roddier, "Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation Evidence for a multilayer structure of the air turbulence in the upper troposphere," J. Opt. Soc. Am. 63, 270-273 (1973). 

  23. B. Garcia-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-Almazan, "Estimation of adaptive optics parameters from wind speed: results for the Teide Observatory," Proc. SPIE 7476, 74760F (2009). 

  24. B. Garcia-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-Almazan, "Adaptive optics parameters connection to wind speed at the Teide Observatory: corrigendum," Mon. Notices Royal Astron. 414, 801-809 (2011). 

  25. C. S. Gardner, B. M. Welsh, and L. A. Thopson, "Design and performance analysis of adaptive optical telescopes using laser guide stars," Proc. IEEE 78, 1721-1743 (1990). 

  26. R. Flicker, "Efficient first-order performance estimation for high-order adaptive optics systems," Astron. Astrophys. 405, 1177-1189 (2003). 

  27. J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, USA 1998). 

  28. https://www.alpao.com/adaptive-optics/deformable-mirrors.html (1 May. 2018). 

  29. https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/hexapods-with-motor-screw-drives/h-824-6-axis-hexapod-700815/ (1 May. 2018). 

  30. http://www.axiomoptics.com/llc/ocam%C2%B2k/ (1 May. 2018). 

  31. http://www.nuvucameras.com/products/ (1 May. 2018). 

  32. M. S. Belen'kii, "Tilt angular correlation and tilt sensing techniques with a laser guide star," Proc. SPIE 2956, 206-217 (1997). 

  33. C. M. Correia and J. Teixeira, "Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems," J. Opt. Soc. Am. A 31, 2763-2774 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로