$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process 원문보기

Environmental engineering research, v.23 no.2, 2018년, pp.175 - 180  

Taki, Golam (Department of Environment & Energy Engineering, Chonnam National University) ,  Islam, Mohammad Nazrul (Department of Environment & Energy Engineering, Chonnam National University) ,  Park, Seong-Jae (Department of Environment & Energy Engineering, Chonnam National University) ,  Park, Jeong-Hun (Department of Environment & Energy Engineering, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

Box-Behnken Design (BBD) under response surface methodology (RSM) was implemented to optimization the operating parameters and assess the removal and recovery efficiencies of crude oil from contaminated soil using subcritical water extraction. The effects of temperature, extraction time and water fl...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • This study applied BBD under RSM to optimize the process variables (namely temperature, time and flow rate) and assess the removal and recovery efficiencies of crude oil from contaminated soil through  the use of subcritical water extraction.
  • Although numerous studies have been carried out with subcritical water extraction, no data is available on the remediation of soil contaminated with crude oil. This study assessed the subcritical water extraction process in terms of its removal and recovery efficiencies to remediate soil contaminated with crude oil.
  • This study used BBD under RSM to optimize the removal and recovery efficiencies of crude oil. RSM is a combined mathematical and statistical technique, and the feasibility of using this technique has been proven in various areas of science.
  • To obtain the best removal and recovery efficiencies of crude oil (setting the target removal efficiency to 99.9), experiments were performed by resolving the regression equation within the same range of operating parameters. A total of 63 suitable solutions were listed using software (Design-Expert 10) according to the desirability factor.

데이터처리

  • Three factors-three levels BBD design was applied using BBD with three center runs, and a total of 15 experimental runs were given using software, as shown in Table 3. Design Expert 10 software and ANOVA were performed to analyze the experimental results and statistical analysis. The second order polynomial model was used to fit the response variables of crude oil extraction and recovery, and it is presented as follows:
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. Roy AS, Baruah R, Borah M, et al. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeter Biodegr. 2014;94:79-89. 

  2. Shen W, Zhu N, Cui J, et al. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotox. Environ. Safe. 2016;124:120-128. 

  3. Merkl N, Schultze-Kraft R, Infante C. Phytoremediation in the tropics - Influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 2005;138:86-91. 

  4. Moubasher HA, Hegazy AK, Mohamed NH, Moustafa YM, Kabiel HF, Hamad AA. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeter. Biodegr. 2015;98:113-120. 

  5. Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C. Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 2012;96:270-276. 

  6. Li D, Zhang Y, Quan X, Zhao Y. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J. Environ. Sci. 2009;21:1290-1295. 

  7. Li X, Du Y, Wu G, Li Z, Li H, Sui H. Solvent extraction for heavy crude oil removal from contaminated soils. Chemosphere 2012;88:245-249. 

  8. Al-Marzouqi AH, Zekri AY, Jobe B, Dowaidar A. Supercritical fluid extraction for the determination of optimum oil recovery conditions. J. Petrol. Sci. Eng. 2007;55:37-47. 

  9. Hu G, Li J, Thring RW, Arocena J. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge. J. Environ. Sci. Heal. A. 2014;49:1425-1435. 

  10. Lim MW, Lau EV, Poh PE. A comprehensive guide of remediation technologies for oil contaminated soil - Present works and future directions. Mar. Pollut. Bull. 2016;109:14-45. 

  11. Islam MN, Jo YT, Park JH. Remediation of PAHs contaminated soil by extraction using subcritical water. J. Ind. Eng. Chem. 2012;18:1689-1693. 

  12. Islam MN, Park JH, Shin MS, Park HS. Decontamination of PCBs-containing soil using subcritical water extraction process. Chemosphere 2014;109:28-33. 

  13. Islam MN, Jo YT, Jung SK, Park JH. Thermodynamic and kinetic study for subcritical water extraction of PAHs. J. Ind. Eng. Chem. 2013;19:129-136. 

  14. Islam MN, Shin MS, Jo YT, Park JH. TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere 2015;119:1148-1152. 

  15. Islam MN, Jo YT, Park JH. Remediation of soil contaminated with lubricating oil by extraction using subcritical water. J. Ind. Eng. Chem. 2014;20:1511-1516. 

  16. Islam MN, Park HS, Park JH. Extraction of diesel from contaminated soil using subcritical water. Environ. Earth Sci. 2015;74:3059-3066. 

  17. Sushkova SN, Minkina TM, Mandzhieva SS, et al. New alternative method of benzo[a]pyrene extractionfrom soils and its approbation in soil under technogenic pressure. J. Soil. Sediment. 2016;16:1323-1329. 

  18. Sushkova SN, Minkina TM, Deryabkina I, et al. Features of accumulation, migration, and transformation of benzo[ a]pyrene in soil-plant system in a model condition of soil contamination. J. Soil. Sediment. 2016:1-7. 

  19. Sushkova SN, Minkina TM, Batukaev A, et al. Analysis of benzo[a]pyrene contamination from an long-term contaminated soil. Am. J. Biochem. Biotechnol. 2015;12:1-11. 

  20. Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresour. Technol. 2008;99:4887-4895. 

  21. Park SW, Lee JY, Yang JS, Kim KJ, Baek K. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. J. Hazard. Mater. 2009;169:1168-1172. 

  22. Kayan B, Gozmen B. Degradation of Acid Red 274 using $H_2O_2$ in subcritical water: Application of response surface methodology. J. Hazard. Mater. 2012;201-202:100-106. 

  23. Yang Y, Hildebrand F. Phenanthrene degradation in subcritical water. Anal. Chim. Acta. 2006;555:364-369. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로