$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고려인삼의 Cytochrome P450 및 P-Glycoprotein 매개 약물 상호작용에 미치는 영향
A Systematic Review on Potential Drug Interactions of Korean Ginseng Based upon Cytochrome P450 and P-Glycoprotein 원문보기

생약학회지, v.49 no.2, 2018년, pp.85 - 102  

남기열 (충남농업마이스터대학) ,  양병욱 (세명대학교 링크플러스 육성사업단) ,  신왕수 (고려인삼연구(주) 중앙연구소) ,  박종대 (고려인삼연구(주) 중앙연구소)

Abstract AI-Helper 아이콘AI-Helper

A drug interaction is a situation in which a substance affects the activity of a drug, synergistically or antagonistically, when both are administered together. It has been shown that orally taken ginsenosides are deglycosylated by intestinal bacteria to give ginsenosides metabolites, which has been...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 인삼복용의 안전성확보와 활용성 제고를 위해서는 인삼의 약물 상호작용에 대한 정보가 매우 중요하다. 따라서 본 논문에서는 인삼의 약물대사에 중요한 역할을 하는 CYP와 P-gp에 미치는 영향과 약물과의 상호작용 가능성에 대해 그 동안 수행된 실험적 연구와 임상사례 보고, 그리고 임상시험을 통해 얻은 결과들을 종합 정리하였다.

가설 설정

  • 43) 또한 GRh2의 20(S형)과 20(R)형의 P-gp 억제효과에 대한 랫드 경구투여시험과 ADR 내성 유방암세포주(MCF-7/Adr cells)와Caco-cell를 이용한 in vitro 실험 결과 20(S) 형의 G-Rh2가 보다 강한 억제효과를 보였다.44) P-gp의 과발현은 암세포의 다제 내성과 관련이 있다. P-gp 과발현 KB-C2 세포 실험에서 진세노사이드의 가수분해 대사체가 P-gp 기질물질인 daunorubicin의 세포내 축적을 증가시켜, P-gp 억제효과를 보였으며, 그 중에서도 PT계 진세노사이드 대사체(M4)가 PD계 대사체(M1, M12)보다 강한 P-gp 배출기능의 억제 효과를 보였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
약물 상호작용은 어떻게 구분되는가? 5) 지난 10년간 인삼을 비롯한 은행잎 추출물, 에키네시아, 성요한풀, 마늘 등의 약초식이보충제와 처방약 사이의 다양한 약물동학적 상호작용이 보고되었다.6-9) 약물 상호작용은 약물이 다른 약물의 흡수, 분포, 대사, 배설에 영향을 미쳐 약물의 혈중농도와 임상적 반응을 변화시키는 약동학적 상호작용(pharmacokinetic interactions)과 약리활성을 변화시키는 약력학적 상호작용(pharmacodynamic interactions)으로 구분된다. 10,11) 약동학적 상호작용에 의한 이상 반응은 일반적으로 cytochrome P450(CYP) 또는 약물수송체 단백질(P-glycoprotein: P-gp)를 유도하거나 억제할 수 있는 병용약물에 의해 일어난다.
인삼은 최근 20년간 미국이나 유럽각국에서 어떻게 사용되어 왔는가? 약초요법제(herbal medicine)의 사용은 일반 성인의 경우 미국에서 약 20%이고, 처방약 복용자의 20~30%가 약초요법제를 병용하고 있는 것으로 보고되었다.1) 특히 인삼은 최근 20년간 미국이나 유럽각국에서 식이보충제로 사용되어 왔고 미국 시장에서도 가장 인기 있는 약초 중의 하나로 판매되고 있다.2,3) 우리나라 성인 대상 건강식품 사용 현황조사(30~69세, 3,000명)에서도 62.
CYP효소(I상 대사)의 주요 효소는 무엇이 있는가? 12) 약물과 환경오염물질, 발암물질 등과 같은 다양한 이물질(xenobiotics)은 주로 CYP효소(I상 대사)와 UDP-glucuronosyltransferases와 N-acetyl transferases와 같은 접합효소(II상 대사)에 의해 제거된다.13-15) 약물 대사에 관여하는 주요한 CYP 효소는 CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1, CYP2C19, 그리고 CYP3A4 등이고, 이들이 외생적, 내생적 물질 대사의 90% 이상을 차지한다.16) 이 중에서 CYP3A4는 가장 중요한 CYP isozymes(CYPs) 으로서 대부분의 대사에 관여하며 모든 처방약의 50% 이상이 CYP3A4에 의해 대사된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (115)

  1. de Lima Toccafondo Vieira, M. and Huang, S. M. (2012) Botanical-drug interactions: a scientific perspective. Planta Med. 78: 1400-1415. 

  2. Qi, L. W., Wang, C. Z., Du, G. J., Zhang, Z. Y., Calway, T. and Yuan, C. S. (2011) Metabolism of ginseng and its interactions with drugs. Curr. Drug Metab. 12: 818-822. 

  3. Wanwimolruk, S., Phopin, K. and Prachayasittikul, V. (2014) Cytochrome P450 enzyme mediated herbal drug interactions (Part 2). EXCLI J. 13: 869-896. 

  4. Ock, S. M., Hwang, S. S., Lee, J. S., Song, C. H. and Ock, C. M. (2010) Dietary supplement use by South Korean adults: Data from the national complementary and alternative medicine use survey (NCAMUS) in 2006. Nutr. Res. Pract. 4: 69-74. 

  5. Werneke, U., Earl, J., Seydel, C., Horn, O., Crichton, P. and Fannon, D. (2004) Potential health risks of complementary alternative medicines in cancer patients. Br. J. Cancer 90: 408-413. 

  6. Robertson, S. M., Davey, R. T., Voell, J., Formentini, E., Alfaro, R. M. and Penzak, S. R. (2008) Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 24: 591-599. 

  7. Penzak, S. R., Robertson, S. M., Hunt, J. D., Chairez, C., Malati, C. Y., Alfaro, R. M., Stevenson, J. M. and Kovacs, J. A. (2010) Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects. Pharmacotherapy 30: 797-805. 

  8. Izzo, A. A. and Ernst, E. (2009) Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs 69: 1777-1798. 

  9. Borrelli, F. and Izzo, A. A. (2009) Herb-drug interactions with St John's wort (Hypericum perforatum): an update on clinical observations. Aaps J. 11: 710-727. 

  10. Beijnen, J. H. and Schellens, J. H. (2004) Drug interactions in oncology. Lancet Oncol. 5: 489-496. 

  11. Mallet, L., Spinewine, A. and Huang, A. (2007) The challenge of managing drug interactions in elderly people. Lancet 370: 185-191. 

  12. Yang L., Liu Y, Liu C. X. (2006) Metabolism and pharmacokinetics of ginsenosides. Asian Journal of Pharmacodynamics and Pharmacokinetics 6: 103-120. 

  13. Delaforge, M. (1998) Importance of metabolism in pharmacological studies: possible in vitro predictability. Nuclear Medicine and Biology 25: 705-709. 

  14. Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450. Lancet 360: 1155-1162. 

  15. Kaminsky, L. S. and Zhang, Q. Y. (2003) The small intestine as a xenobiotic-metabolizing organ. Drug Metabolism and Disposition: The biological fate of chemicals. 31: 1520-1525. 

  16. Lin, J. H. (2006) CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharmaceutical research 23: 1089-1116. 

  17. Guengerich, F. P. (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annual Review of Pharmacology and Toxicology 39: 1-17. 

  18. Cho, H. J. and Yoon, I. S. (2015) Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. Evid. Based Complement Alternat. Med. 2015: 736431. 

  19. Chang, T. K., Chen, J. and Benetton, S. A. (2002) In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metabolism and Disposition 30: 378-384. 

  20. Yu, C. T., Chen, J., Teng, X. W., Tong, V. and Chang, T. K. (2005) Lack of evidence for induction of CYP2B1, CYP3A23, and CYP1A2 gene expression by Panax ginseng and Panax quinquefolius extracts in adult rats and primary cultures of rat hepatocytes. Drug Metabolism and Disposition 33: 19-22. 

  21. Zheng, Y. F., Bae, S. H., Choi, E. J., Park, J. B., Kim, S. O., Jang, M. J., Park, G. H., Shin, W. G., Oh, E. and Bae, S. K. (2014) Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition. Food and Chemical Toxicology 68: 117-127. 

  22. Kawase, A., Yamada, A., Gamou, Y., Tahara, C., Takeshita, F., Murata, K., Matsuda, H., Samukawa, K. and Iwaki, M. (2014) Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J. Nat. Med. 68: 395-401. 

  23. Kawase, A., Yamada, A., Gamou, Y., Tahara, C., Takeshita, F., Murata, K., Matsuda, H., Samukawa, K. and Iwaki, M. (2013) Increased effects of ginsenosides on the expression of cholesterol 7alpha-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J. Nat. Med. 67: 545-553. 

  24. Henderson, G. L., Harkey, M. R., Gershwin, M. E., Hackman, R. M., Stern, J. S. and Stresser, D. M. (1999) Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci. 65: PL209-214. 

  25. He, N. and Edeki, T. (2004) The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am. J. Ther. 11: 206-212. 

  26. Lewis, D. F., Ioannides, C., Parke, D. V. and Schulte-Hermann, R. (2000) Quantitative structure-activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and hepatomegaly associated with increased DNA synthesis. The Journal of Steroid Biochemistry and Molecular Biology 74: 179-185. 

  27. Smith, D. A. and Jones, B. C. (1992) Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochemical Parmacology 44: 2089-2098. 

  28. Liu, Y., Ma, H., Zhang, J. W., Deng, M. C. and Yang, L. (2006) Influence of ginsenoside Rh1 and F1 on human cytochrome p450 enzymes. Planta Med. 72: 126-131. 

  29. Liu, Y., Zhang, J. W., Li, W., Ma, H., Sun, J., Deng, M. C. and Yang, L. (2006) Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicological Sciences 91: 356-364. 

  30. Liu, Y., Li, W., Li, P., Deng, M. C., Yang, S. L. and Yang, L. (2004) The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity. Biol. Pharm. Bull. 27: 1555-1560. 

  31. Xiao, J., Chen, D., Lin, X. X., Peng, S. F., Xiao, M. F., Huang, W. H., Wang, Y. C., Peng, J. B., Zhang, W. and Ouyang, D. S. (2016) Screening of drug metabolizing enzymes for the ginsenoside compound K in vitro: An efficient anticancer substance originating from Panax ginseng. PLoS One 11: e0147183. 

  32. Chiu, N. T., Tomlinson Guns, E. S., Adomat, H., Jia, W. and Deb, S. (2014) Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol. Biopharmaceutics and Drug Disposition 35: 104-118. 

  33. Deb, S., Chin, M. Y., Adomat, H. and Guns, E. S. (2014) Ginsenoside-mediated blockade of 1 alpha, 25-dihydroxyvitamin D3 inactivation in human liver and intestine in vitro. The Journal of Steroid Biochemistry and Molecular Biology. 141: 94-103. 

  34. Hao, M., Zhao, Y., Chen, P., Huang, H., Liu, H., Jiang, H., Zhang, R. and Wang, H. (2008) Structure-activity relationship and substrate-dependent phenomena in effects of ginsenosides on activities of drug-metabolizing P450 enzymes. PLoS One 3: e2697. 

  35. Hao, M., Ba, Q., Yin, J., Li, J., Zhao, Y. and Wang, H. (2011) Deglycosylated ginsenosides are more potent inducers of CYP1A1, CYP1A2 and CYP3A4 expression in HepG2 cells than glycosylated ginsenosides. Drug Metabolism and Pharmacokinetics 26: 201-205. 

  36. Fang, Z. Z., Cao, Y. F., Hu, C. M., Hong, M., Sun, X. Y., Ge, G. B., Liu, Y., Zhang, Y. Y., Yang, L. and Sun, H. Z. (2013) Structure-inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs). Toxicol. Appl. Pharmacol. 267: 149-154. 

  37. He, Y. J., Fang, Z. Z., Ge, G. B., Jiang, P., Jin, H. Z., Zhang, W. D. and Yang, L. (2013) The inhibitory effect of 20(S)-protopanaxatriol (ppt) towards UGT1A1 and UGT2B7. Phytother. Res. 27: 628-632. 

  38. Liang, Y., Zhou, Y., Zhang, J., Rao, T., Zhou, L., Xing, R., Wang, Q., Fu, H., Hao, K. and Xie, L. (2014) Pharmacokinetic compatibility of ginsenosides and Schisandra lignans in Shengmai-san: from the perspective of p-glycoprotein. PLoS One 9: e98717. 

  39. Molnar, J., Szabo, D., Pusztai, R., Mucsi, I., Berek, L., Ocsovszki, I., Kawata, E. and Shoyama, Y. (2000) Membrane associated antitumor effects of crocine-, ginsenoside- and cannabinoid derivates. Anticancer Res. 20: 861-867. 

  40. Kim, S. W., Kwon, H. Y., Chi, D. W., Shim, J. H., Park, J. D., Lee, Y. H., Pyo, S. and Rhee, D. K. (2003) Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochemical Pharmacology 65: 75-82. 

  41. Kwon, H. Y., Kim, E. H., Kim, S. W., Kim, S. N., Park, J. D. and Rhee, D. K. (2008) Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation. Arch. Pharm. Res. 31: 171-177. 

  42. Yang, L. Q., Wang, B., Gan, H., Fu, S. T., Zhu, X. X., Wu, Z. N., Zhan, D. W., Gu, R. L., Dou, G. F. and Meng, Z. Y. (2012) Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharmaceutics and Drug Disposition 33: 425-436. 

  43. Zhang, J., Zhou, F., Wu, X., Gu, Y., Ai, H., Zheng, Y., Li, Y., Zhang, X., Hao, G. and Sun, J. (2010) 20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions. Drug Metabolism and Disposition 38: 2179-2187. 

  44. Zhang, J., Zhou, F., Niu, F., Lu, M., Wu, X., Sun, J. and Wang, G. (2012) Stereoselective regulations of P-glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics. PLoS One 7: e35768. 

  45. Kitagawa, S., Takahashi, T., Nabekura, T., Tachikawa, E. and Hasegawa, H. (2007) Inhibitory effects of ginsenosides and their hydrolyzed metabolites on daunorubicin transport in KB-C2 cells. Biol. Pharm. Bull. 30: 1979-1981. 

  46. Li, N., Wang, D., Ge, G., Wang, X., Liu, Y. and Yang, L. (2014) Ginsenoside metabolites inhibit P-glycoprotein in vitro and in situ using three absorption models. Planta Med. 80: 290-296. 

  47. Gu, Y., Wang, G. J., Sun, J. G., Jia, Y. W., Wang, W., Xu, M. J., Lv, T., Zheng, Y. T. and Sai, Y. (2009) Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food and Chemical Toxicology 47: 2257-2268. 

  48. Lee, P. S., Song, T. W., Sung, J. H., Moon, D. C., Song, S. and Chung, Y. B. (2006) Pharmacokinetic characteristics and hepatic distribution of IH-901, a novel intestinal metabolite of ginseng saponin, in rats. Planta Med. 72: 204-210. 

  49. Yang, Z., Gao, S., Wang, J., Yin, T., Teng, Y., Wu, B., You, M., Jiang, Z. and Hu, M. (2011) Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metabolism and Disposition 39: 1866-1872. 

  50. Yang, Z., Wang, J. R., Niu, T., Gao, S., Yin, T., You, M., Jiang, Z. H. and Hu, M. (2012) Inhibition of P-glycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metabolism and Disposition 40: 1538-1544. 

  51. Zhang, R., Jie, J., Zhou, Y., Cao, Z. and Li, W. (2009) Long-term effects of Panax ginseng on disposition of fexofenadine in rats in vivo. Am. J. Chin. Med. 37: 657-667. 

  52. Choi, C. H., Kang, G. and Min, Y. D. (2003) Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med. 69: 235-240. 

  53. Jin, J., Shahi, S., Kang, H. K., van Veen, H. W. and Fan, T. P. (2006) Metabolites of ginsenosides as novel BCRP inhibitors. Biochemical and Biophysical Research Communications 345: 1308-1314. 

  54. Zhang, J., Zhou, F., Wu, X., Zhang, X., Chen, Y., Zha, B. S., Niu, F., Lu, M., Hao, G. and Sun, Y. (2012) Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br. J. Pharmacol. 165: 120-134. 

  55. Gurley, B. J., Gardner, S. F., Hubbard, M. A., Williams, D. K., Gentry, W. B., Cui, Y. and Ang, C. Y. (2002) Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clinical Pharmacology and Therapeutics 72: 276-287. 

  56. Gurley, B. J., Gardner, S. F., Hubbard, M. A., Williams, D. K., Gentry, W. B., Cui, Y. and Ang, C. Y. (2005) Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John's wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22: 525-539. 

  57. Anderson, G. D., Rosito, G., Mohustsy, M. A. and Elmer, G. W. (2003) Drug interaction potential of soy extract and Panax ginseng. J. Clin. Pharmacol. 43: 643-648. 

  58. Malati, C. Y., Robertson, S. M., Hunt, J. D., Chairez, C., Alfaro, R. M., Kovacs, J. A. and Penzak, S. R. (2012) Influence of Panax ginseng on cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp) activity in healthy participants. J. Clin. Pharmacol. 52: 932-939. 

  59. Kim, D. S., Kim, Y., Jeon, J. Y. and Kim, M. G. (2016) Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers. J. Ginseng Res. 40: 375-381. 

  60. Kim, M. G., Kim, Y., Jeon, J. Y. and Kim, D. S. (2016) Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol. 82: 1580-1590. 

  61. Cho, Y. K., Jung, Y., Sung, H. and Joo, C. H. (2011) Frequent genetic defects in the HIV-1 5' LTR/gag gene in hemophiliacs treated with Korean Red Ginseng: Decreased detection of genetic defects by highly active antiretroviral therapy. J. Ginseng Res. 35: 413-420. 

  62. Lee, C. G., Gottesman, M. M., Cardarelli, C. O., Ramachandra, M., Jeang, K. T., Ambudkar, S. V., Pastan, I. and Dey, S. (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37: 3594-3601. 

  63. Drewe, J., Gutmann, H., Fricker, G., Torok, M., Beglinger, C. and Huwyler, J. (1999) HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochemical Pharmacology 57: 1147-1152. 

  64. Kumar, G. N., Rodrigues, A. D., Buko, A. M. and Denissen, J. F. (1996) Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277: 423-431. 

  65. Eagling, V. A., Back, D. J. and Barry, M. G. (1997) Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br. J. Clin. Pharmacol. 44: 190-194. 

  66. Shi, J., Cao, B., Zha, W. B., Wu, X. L., Liu, L. S., Xiao, W. J., Gu, R. R., Sun, R. B., Yu, X. Y. and Zheng, T. (2013) Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacologica Sinica 34: 1349-1358. 

  67. Patel, J., Buddha, B., Dey, S., Pal, D. and Mitra, A. K. (2004) In vitro interaction of the HIV protease inhibitor ritonavir with herbal constituents: changes in P-gp and CYP3A4 activity. Am. J. Ther. 11: 262-277. 

  68. Lee, L. S., Wise, S. D., Chan, C., Parsons, T. L., Flexner, C. and Lietman, P. S. (2008) Possible differential induction of phase 2 enzyme and antioxidant pathways by American ginseng, Panax quinquefolius. J. Clin. Pharmacol. 48: 599-609. 

  69. Andrade, A. S., Hendrix, C., Parsons, T. L., Caballero, B., Yuan, C. S., Flexner, C. W., Dobs, A. S. and Brown, T. T. (2008) Pharmacokinetic and metabolic effects of American ginseng (Panax quinquefolius) in healthy volunteers receiving the HIV protease inhibitor indinavir. BMC Complement Altern. Med. 8: 50. 

  70. Mateo-Carrasco, H., Galvez-Contreras, M. C., Fernandez-Gines, F. D. and Nguyen, T. V. (2012) Elevated liver enzymes resulting from an interaction between Raltegravir and Panax ginseng: a case report and brief review. Drug Metabolism and Drug Interactions 27: 171-175. 

  71. Shader, R. I. and Greenblatt, D. J. (1988) Bees, ginseng and MAOIs revisited. J. Clin. Psychopharmacol. 8: 235. 

  72. Shader, R. I. and Greenblatt, D. J. (1985) Phenelzine and the dream machine-ramblings and reflections. J. Clin. Psychopharmacol. 5: 65. 

  73. Jones, B. D. and Runikis, A. M. (1987) Interaction of ginseng with phenelzine. J. Clin. Psychopharmacol. 7: 201-202. 

  74. Harbord, R. M., Egger, M. and Sterne, J. A. (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat. Med. 25: 3443-3457. 

  75. Molassiotis, A., Potrata, B. and Cheng, K. K. (2009) A systematic review of the effectiveness of Chinese herbal medication in symptom management and improvement of quality of life in adult cancer patients. Complement Ther. Med. 17: 92-120. 

  76. Ernst, E. (2010) Panax ginseng: an overview of the clinical evidence. Journal of Ginseng Research 34: 259-263. 

  77. Bilgi, N., Bell, K., Ananthakrishnan, A. N. and Atallah, E. (2010) Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann. Pharmacother. 44: 926-928. 

  78. Collado-Borrell, R., Escudero-Vilaplana, V., Romero-Jimenez, R., Iglesias-Peinado, I., Herranz-Alonso, A. and Sanjurjo-Saez, M. (2016) Oral antineoplastic agent interactions with medicinal plants and food: an issue to take into account. Journal of Cancer Research and Clinical Oncology 142: 2319-2330. 

  79. Lee, Y., Jin, Y., Lim, W., Ji, S., Choi, S., Jang, S. and Lee, S. (2003) A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. The Journal of Steroid Biochemistry and Molecular Biology 84: 463-468. 

  80. Park, J., Song, H., Kim, S. K., Lee, M. S., Rhee, D. K. and Lee, Y. (2017) Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J. Ginseng Res. 41: 215-221. 

  81. Mohamadi, A., Aghaei, M. and Panjehpour, M. (2018) Estrogen stimulates adenosine receptor expression subtypes in human breast cancer MCF-7 cell line. Res. Pharm. Sci. 13: 57-64. 

  82. King, M. L., Adler, S. R. and Murphy, L. L. (2006) Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr. Cancer Ther. 5: 236-243. 

  83. Hsu, W. L., Tsai, Y. T., Wu, C. T. and Lai, J. N. (2015) The Prescription pattern of chinese herbal products containing ginseng among tamoxifen-treated female breast cancer survivors in Taiwan: A Population-based study. Evid. Based Complement Alternat. Med. 2015: 385204. 

  84. Cui, Y., Shu, X. O., Gao, Y. T., Cai, H., Tao, M. H. and Zheng, W. (2006) Association of ginseng use with survival and quality of life among breast cancer patients. American Journal of Epidemiology 163: 645-653. 

  85. Perini, J. A., Struchiner, C. J., Silva-Assuncao, E., Santana, I. S., Rangel, F., Ojopi, E. B., Dias-Neto, E. and Suarez-Kurtz, G. (2008) Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clinical Pharmacology and Therapeutics 84: 722-728. 

  86. Janetzky, K. and Morreale, A. P. (1997) Probable interaction between warfarin and ginseng. American Journal of Health-System Pharmacy 54: 692-693. 

  87. Jiang, X., Williams, K. M., Liauw, W. S., Ammit, A. J., Roufogalis, B. D., Duke, C. C., Day, R. O. and McLachlan, A. J. (2004) Effect of St John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 57: 592-599. 

  88. Jiang, X., Blair, E. Y. and McLachlan, A. J. (2006) Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J. Clin. Pharmacol. 46: 1370-1378. 

  89. Yuan, C. S., Wei, G., Dey, L., Karrison, T., Nahlik, L., Maleckar, S., Kasza, K., Ang-Lee, M. and Moss, J. (2004) Brief communication: American ginseng reduces warfarin's effect in healthy patients: a randomized, controlled Trial. Annals of Internal Medicine 141: 23-27. 

  90. Lee, Y. H., Lee, B. K., Choi, Y. J., Yoon, I. K., Chang, B. C. and Gwak, H. S. (2010) Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. International Journal of Cardiology. 145: 275-276. 

  91. Lee, S. H., Ahn, Y. M., Ahn, S. Y., Doo, H. K. and Lee, B. C. (2008) Interaction between warfarin and Panax ginseng in ischemic stroke patients. Journal of Aternative and Complementary Medicine 14: 715-721. 

  92. Qi, L. W., Wang, C. Z. and Yuan, C. S. (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72: 689-699. 

  93. Zhu, M., Chan, K. W., Ng, L.S., Chang, Q., Chang, S. and Li, R. C. (1999) Possible influences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats. J. Pharm. Pharmacol. 51: 175-180. 

  94. Ramanathan, M. R. and Penzak, S. R. (2017) Pharmacokinetic Drug Interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet. 42: 545-557. 

  95. Kimura, Y., Okuda, H. and Arichi, S. (1988) Effects of various ginseng saponins on 5-hydroxytryptamine release and aggregation in human platelets. J. Pharm. Pharmacol. 40: 838-843. 

  96. Kuo, S. C., Teng, C. M., Lee, J. C., Ko, F. N., Chen, S. C. and Wu, T. S. (1990) Antiplatelet components in Panax ginseng. Planta Med. 56: 164-167. 

  97. Park, H. J., Lee, J. H., Song, Y. B. and Park, K. H. (1996) Effects of dietary supplementation of lipophilic fraction from Panax ginseng on cGMP and cAMP in rat platelets and on blood coagulation. Biol. Pharm. Bull. 19: 1434-1439. 

  98. Yu, J. Y., Jin, Y. R., Lee, J. J., Chung, J. H., Noh, J. Y., You, S. H., Kim, K. N., Im, J. H., Lee, J. H. and Seo, J. M. (2006) Antiplatelet and antithrombotic activities of Korean Red Ginseng. Arch. Pharm. Res. 29: 898-903. 

  99. Jin, Y. R., Yu, J. Y., Lee, J. J., You, S. H., Chung, J. H., Noh, J. Y., Im, J. H., Han, X. H., Kim, T. J. and Shin, K. S. (2007) Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin. Pharmacol. Toxicol. 100: 170-175. 

  100. Elmer, G. W., Lafferty, W. E., Tyree, P. T. and Lind, B. K. (2007) Potential interactions between complementary/alternative products and conventional medicines in a Medicare population. Ann. Pharmacother. 41: 1617-1624. 

  101. Tachjian, A., Maria, V. and Jahangir, A. (2010) Use of herbal products and potential interactions in patients with cardiovascular diseases. Journal of the American College of Cardiology 55: 515-525. 

  102. Ang-Lee, M. K., Moss, J. and Yuan, C. S. (2001) Herbal medicines and perioperative care. JAMA 286: 208-216. 

  103. Takahashi, M. and Tokuyama, S. (1998) Pharmacological and physiological effects of ginseng on actions induced by opioids and psychostimulants. Methods Find Exp. Clin. Pharmacol. 20: 77-84. 

  104. Mitra, S. K., Chakraborti, A. and Bhattacharya, S. K. (1996) Neuropharmacological studies on Panax ginseng. Indian J. Exp. Biol. 34: 41-47. 

  105. Bhargava, H. N. and Ramarao, P. (1991) The effect of Panax ginseng on the development of tolerance to the pharmacological actions of morphine in the rat. Gen. Pharmacol. 22: 521-525. 

  106. Kim, H. C., Shin, E. J., Jang, C. G., Lee, M. K., Eun, J. S., Hong, J. T. and Oh, K. W. (2005) Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch. Pharm. Res. 28: 995-1001. 

  107. Abebe, W. (2002) Herbal medication: potential for adverse interactions with analgesic drugs. Journal of Clinical Pharmacy and Therapeutics. 27: 391-401. 

  108. Vuksan, V., Sievenpiper, J. L., Koo, V. Y., Francis, T., Beljan-Zdravkovic, U., Xu, Z. and Vidgen, E. (2000) American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch. Intern. Med. 160: 1009-1013. 

  109. Vuksan, V., Stavro, M. P., Sievenpiper, J. L., Beljan-Zdravkovic, U., Leiter, L. A., Josse, R. G. and Xu, Z. (2000) Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes. Diabetes Care 23: 1221-1226. 

  110. Shishtar, E., Sievenpiper, J. L., Djedovic, V., Cozma, A. I., Ha, V., Jayalath, V. H., Jenkins, D. J., Meija, S. B., de Souza, R. J. and Jovanovski, E. (2014) The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 9: e107391. 

  111. Sotaniemi, E. A., Haapakoski, E. and Rautio, A. (1995) Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 18: 1373-1375. 

  112. Vuksan, V., Sung, M. K., Sievenpiper, J. L., Stavro, P. M., Jenkins, A. L., Di Buono, M., Lee, K. S., Leiter, L. A., Nam, K. Y. and Arnason, J. T. (2008) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis. 18: 46-56. 

  113. De Souza, L. R., Jenkins, A. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2015) Ethanol extraction preparation of American ginseng (Panax quinquefolius L) and Korean red ginseng (Panax ginseng C.A. Meyer): differential effects on postprandial insulinemia in healthy individuals. J. Ethnopharmacol. 159: 55-61. 

  114. Kiefer, D. and Pantuso, T. (2003) Panax ginseng. Am. Fam. Physician. 68: 1539-1542. 

  115. Kim, H. J., Chun, Y. J., Park, J. D., Kim, S. I., Roh, J. K. and Jeong, T. C. (1997) Protection of rat liver microsomes against carbon tetrachloride-induced lipid peroxidation by red ginseng saponin through cytochrome P450 inhibition. Planta Med. 63: 415-418. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로