$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

무선센서 네트워크를 이용한 지하광산 내 환경 모니터링과 통신 시스템의 연구 동향 분석 및 고찰
Review of Environmental Monitoring and Communication System in Underground Mines Using Wireless Sensor Network 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.28 no.3, 2018년, pp.209 - 231  

이승준 (인하대학교 에너지자원공학과) ,  박요한 (인하대학교 에너지자원공학과) ,  이학경 (인하대학교 에너지자원공학과) ,  김진 (인하대학교 에너지자원공학과)

초록
AI-Helper 아이콘AI-Helper

지하광산 내 심각한 사고가 전 세계적으로 끊임없이 발생하고 있다. 작업자의 생명과 건강을 확보하고 생산성을 향상시키기 위해서 최근 갱내 무선센서 네트워크 기반 환경 모니터링 및 통신 시스템의 구축을 위한 수많은 연구가 진행되고 있다. 국내에서도 최근 정보통신기술의 도입으로 이러한 시스템의 개발 및 구축 사례가 증가하기 시작했지만 갱내통기를 고려한 환경 모니터링에 대한 국내연구는 미비하다. 본 연구에서는 갱내 무선센서 네트워크의 구축 및 환경 모니터링에 관련한 해외의 다양한 연구 동향을 분석하였고, 특히 환경 모니터링 시스템의 갱내통기와 관련한 7가지 세부 주제에 대하여 고찰하였다. 또한 실시간 모니터링을 수행한 연구의 동향을 통기 네트워크 해석에 활용되는 상용 소프트웨어 별로 정리하여 고찰하였다. 본 연구를 통해 국내광산에 적용하기 위해 추후 연구가 필요한 주제와 국내에 적용 중인 갱내환경 기준에 대해 논의하였다. 본 논문은 국내 지하광산 내 무선센서 네트워크 기반의 환경모니터링과 통신 시스템의 구축과 관련한 향후 연구에 도움이 될 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Severe mine disasters have continued to occur around the world. To ensure worker's health and safety and enhance the productivity, a number of studies have been conducted for the development of wireless sensor network (WSN), environmental monitoring, and communication system in underground mines. An...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
지하광산 내 심각한 사고를 방지하기 위해 하고 있는 연구들은? 지하광산 내 심각한 사고가 전 세계적으로 끊임없이 발생하고 있다. 작업자의 생명과 건강을 확보하고 생산성을 향상시키기 위해서 최근 갱내 무선센서 네트워크 기반 환경 모니터링 및 통신 시스템의 구축을 위한 수많은 연구가 진행되고 있다. 국내에서도 최근 정보통신기술의 도입으로 이러한 시스템의 개발 및 구축 사례가 증가하기 시작했지만 갱내통기를 고려한 환경 모니터링에 대한 국내연구는 미비하다.
세계에서 갱내 사고가 가장 많이 발생하는 국가는? 최근까지도 국내의 광산에서 폭발사고 및 매몰사고 등으로 인해 사상자가 생기는 안타까운 사고가 발생하고 있다. 세계에서 갱내 사고가 가장 많이 발생하는 중국에서는 해 마다 수천 명이 사망하는 일이 지속적으로 발생하고 있다(Wu et al., 2011).
갱내 통기와 관련한 주요 위험요인으로는 어떤 것들이 있는가? 갱내 작업환경에서 건강에 해를 미치거나 사고를 일으킬 수 있는 위험 요인은 아주 다양하다. 특히 갱내 통기와 관련한 주요 위험요인으로는 유해 가스, 폭발성 가스, 분진, 온도, 습도, 그리고 방사선 등이 있다. 이와 같은 요인들이 갱내에서 사고 혹은 재난으로 이어지는 것은 여러 작은 사건들이 다발적으로 발생하면서 예측 불가능한 상황을 초래하는 것으로 볼 수 있다(Griffin et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (106)

  1. Acuna, E.I., and I.S. Lowndes, 2014, A review of primary mine ventilation system optimization, Interfaces, 44.2, 163-175. 

  2. Agioutantis, Z., K. Luxbacher, M. Karmis, and S. Schafrik, 2014, Development of an atmospheric data management system for underground coal mines, J. South Afr. Inst. Min. Metall., 114.12, 1059-1063. 

  3. Akyildiz, I.F. and E.P. Stuntebec, 2006, Wireless underground sensor networks: Research challenges, Ad Hoc Networks, 4.6, 669-686. 

  4. Baek, J., Y. Choi, C. Lee, J. Suh, and S. Lee, 2017, BBUNS: Bluetooth beacon-based underground navigation system to support mine haulage operations, Minerals, 7.11, 228. 

  5. Bai, M., X. Zhao, Z.G. Hou, and M. Tan, 2007, A wireless sensor network used in coal mines, In Networking, Sensing and Control, 2007 IEEE Int. Conf., 319-323. 

  6. Baishun, S., P. Zhengduo, and M. Guoying, 2010, Design of the mine gas sensor based on Zigbee, In The Third International Symposium Computer Science and Computational Technology (ISCSCT 2010), 77. 

  7. Bandyopadhyay, L.K., S.K. Chaulya, P.K. Mishra, and A. Choure, 2008, Wireless information and safety system for underground mines, Proceedings of the International Union of Radio Science (URSI) General Assembly, Vol. 68, 9-16. 

  8. Barone, T.L., E. Hesse, C.E. Seaman, A.J. Baran, T.W. Beck, M.L. Harris, P.A. Jaques, P. Gao, D.E. Schwegler-Berry, and S.E. Mischler, 2017, Real-time sizing of airborne coarse coal dust, In 16th North American Mine Ventilation Symposium, Golden, Colorado, Society for Mining, Metallurgy and Exploration, Vol. 6, 11-18. 

  9. Bascompta, M., A.M. Castanon, L. Sanmiquel, and J. Oliva, 2016, A GIS-based approach: Influence of the ventilation layout to the environmental conditions in an underground mine, J. Environ. Manage., 182, 525-530. 

  10. Belle, B., 2013, Real-time air velocity monitoring in mines-a quintessential design parameter for managing major mine health and safety hazards, In 13th Coal Operators' Conference, University of Wollongong, The Australasian Institute of Mining and Metallurgy & Mine Managers Association of Australia, 184-198. 

  11. Benedetto, M.D., A. D'Innocenzo, E. Serra, and E. Witrant, 2008, Automatic verification of wireless control in a mining ventilation system, In 4th IEEE Conference on Automation Science and Engineering, CASE 2008, 858-863. 

  12. Bhattacharjee, S., P. Roy, S. Ghosh, S. Misra, and M.S. Obaidat, 2012, Wireless sensor network-based fire detection, alarming, monitoring and prevention system for Bord-and-Pillar coal mines, J. Syst. Softw., 85.3, 571-581. 

  13. Bluetooth SIG Inc., 2018, Radio Versions | Bluetooth Technology Website, Retrieved May 10, 2018, from https://www.bluetooth.com/bluetooth-technology/radio-versions. 

  14. Bo, C., C. Xin, Z. Zhongyi, Z. Chengwen, and C. Junliang, 2014, Web of things-based remote monitoring system for coal mine safety using wireless sensor network, Int. J. Distrib. Sens. Netw., 10.8, 1-14. 

  15. Bo, C., Z. Peng, Z. Da, and C. Junliang, 2012, The complex alarming event detecting and disposal processing approach for coal mine safety using wireless sensor network, Int. J. Distrib. Sens. Netw., 8.11, 1-12. 

  16. Carpenter, K., P. Roghanchi, and K.C. Kocsis, 2015, Investigating the importance of climatic monitoring and modeling in deep and hot US underground mines, Proceedings of 15th North American Mine Ventilation Symposium, Virginia Tech, Virginia, 1-4. 

  17. Chehri, A., H. Mouftah, P. Fortier, and H. Aniss, 2010, Experimental testing of IEEE801.15.4/ZigBeeTM sensor networks in confined area, Communication Networks and Services Research Conference (CNSR), 2010 Eighth Annual. IEEE, 244-247. 

  18. Chehri, A., W. Farjow, H.T. Mouftah, and X. Fernando, 2011, Design of wireless sensor network for mine safety monitoring, In Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on IEEE. 001532-001535. 

  19. Chen, S., J. Yao, and Y. Wu, 2012, Analysis of the power consumption for wireless sensor network node based on ZigBee, Procedia Eng., 29, 1994-1998. 

  20. Chen, W., X. Jiang, X. Li, J. Gao, X. Xu, and S. Ding, 2013, Wireless sensor network nodes correlation method in coal mine tunnel based on Bayesian decision, Measurement (IMEKO), 46.8, 2335-2340. 

  21. Chen, W., Y. Sun, and H. Xu, 2010, Clustering chain-type topology for wireless underground sensor networks, Intelligent Control and Automation (WCICA), 2010 8th World Congress on. IEEE, 1125-1129. 

  22. Cheng, B., X. Cheng, and J. Chen, 2015, Lightweight monitoring and control system for coal mine safety using REST style, ISA Transactions, 54, 229-239. 

  23. Cho, S.H., H.S. Lee, H.G. Chung, and J.H. Shin, 2017, 지하 심부 정보획득.통신 기술 [Deep underground information acquisition and communication technologies], The Korean Institute of Electrical Engineers, 66.9, 18-26. 

  24. Choi, Y., 2017, The roles and technology trends of ICT in mines, J. Korean Soc. Miner. Energy Resour. Eng., 54.1, 66-78. 

  25. Danko, G.L., 2013, Subsurface flow and transport process model for time dependent mine ventilation simulations, Min. Technol., 122.3, 134-144. 

  26. Darling, P., 2011, SME Mining Engineering Handbook (3rd ed.), Society for Mining, Metallurgy, and Exploration, Inc. (SME), Denver, CO. 

  27. Dassault Systemes., 2013, Dassault Systemes' Geovia Customer Dundee Precious Metals Recognised With 2013 Ingenious Award For Innovative Use Of Technology, Retrieved April 11, 2018, from http://suppliersandequipment.mining.com/2013/11/28/dassault-systemes-geovia-customer-dundee-precious-metals-recognised-with-2013-ingenious-award-for-innovative-use-of-technology/ 

  28. Dementyev, A., S. Hodges, S. Taylor, and J. Smith, 2013, Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario, Wireless Symposium (IWS), 2013 IEEE International. IEEE, 1-4. 

  29. Furuno, Y., P. Walshe, D. Noble, and M. Kitai, 2015, Global Deployment of Mining Solution Business Powered by ICT, Hitachi Rev., 64.7, 377-382. 

  30. Gaware, J.J., B.K. Sahoo, B.K. Sapra, Y.S. Mayya, R. Physics, A. Division, and B. Atomic, 2011, Indigenous development and networking of online radon monitors in the underground uranium mine, Radiat. Prot. Environ., 34.1, 37-40. 

  31. Gillies, A., N. Tuffs, and T. Sartor, 2003, Real time integrated mine ventilation monitoring, Proc. Proceedings, Queensland Mining Industry Health and Safety Conference, 133-140. 

  32. Gillies, A.D.S., H.W. Wu, and T.I. Mayes, 2002a, Mine regulators to allow real time ventilation monitoring, In Proceedings, Queensland Mining Industry Health and Safety Conference, Townsville, 145-150. 

  33. Gillies, A.D.S., H.W. Wu, N. Tuff, T. Sartor, 2004, Development of a real time airflow monitoring and control system, In Tenth US Mine Ventilation Symposium, Anchorage, Balkema, The Netherlands, 145-155. 

  34. Gillies, A.D.S., H.W. Wu, T.I. Mayes, and A. Halim, 2002b, Measurement of airflow through regulators and real time integrated monitoring, Proceedings North American Ninth US Mine Ventilation Symposium, 301-308. 

  35. Government of Western Australia, 2013, Guideline on management of diesel emission in Western Australian mining operations. 

  36. Griffin, K.R., K.D. Luxbacher, S.J. Schafrik, and M.E. Karmis, 2012, Comprehensive ventilation simulation of atmospheric monitoring sensors in underground coal mines, 14th U.S./North American Mine Ventilation Symposium, 509-516. 

  37. Griffin, K.R., S.J. Schafrik, and M.E. Karmis, 2010, Designing and modeling wireless mesh communication in underground coal mines, In SME Annual Meeting, 1-4. 

  38. Halim, A., 2017, Ventilation requirements for diesel equipment in underground mines - Are we using the correct values?, 16th North American Mine Ventilation Symposium, Golden, Colorado, June 17-22 2017. Society for Mining, Metallurgy and Exploration, 1-7. 

  39. Hartman, H.L., J.M. Mutmansky, R.V. Ramani, and Y.J. Wang, 2012, Mine ventilation and air conditioning, John Wiley & Sons. 

  40. He, X. and Y. Wang, 2012, The design of tungsten mine environment monitoring system based on wireless sensor networks, Intelligent System Design and Engineering Application (ISDEA), 2012 Second International Conference on. IEEE, 1319-1322. 

  41. Huang, X., W. Zhu, and D. Lu, 2010, Underground miners localization system based on ZigBee and WebGIS, Geoinformatics, 2010 18th International Conference on. IEEE, 1-5. 

  42. Joo, Y.I. and J.W. Kim, 2013, A study on environment management system in tunnel using wireless sensor networks, J. Korea Multimed. Soc., 16.10, 1196-1203. 

  43. Jung, J., and Y. Choi, 2016, Collecting travel time data of mine equipments in an underground mine using reverse RFID systems, Tunnel and Underground Space, 26.4, 253-265. 

  44. Kennedy, G.A., and M.D. Bedford, 2014, Underground wireless networking: A performance evaluation of communication standards for tunnelling and mining, Tunnelling and Underground Space Technology, 43, 157-170. 

  45. Kim, D., S. Lee, K. Jeong, and C. Lee, 2012, A case study on the ventilation and heat environment in a underground limestone mine with rampway, Tunnel and Underground Space, 22.3, 163-172. 

  46. Kim, S., S. Kim, Y. Kim, and Y. Jang, 2017, A study on mine ventilation network. Tunnel and Underground Space, 27.4, 217-229. 

  47. Kim, Y., J. Roh, and J. Kim, 2016, Ventilation efficiency evaluation of domestic limestone mine using tracer gas method, Tunnel and Underground Space, 26.4, 274-282. 

  48. Kocsis, C.K. and S. Hardcastle 2003, Ventilation system operating cost comparison between a conventional and an automated underground metal mine, Min. Eng., 55.10, 57-64. 

  49. KORES, 2017, 광산안전기술기준 [Mine Safety Technology Standards]. 

  50. Kumar, T.A. and K.S. Rao, 2013, Integrated mine safety monitoring and alerting system using Zigbee & Can Bus, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 8.3, 82-87. 

  51. Kwon, J., H. Kim, G. Kim, J. Kim, and J. Park, 2010, Development of machine intelligent communication module for remote air quality management monitoring system in underground tunnel, In Information and control symposium, 173-174. 

  52. Kwon, J., J. Kim, G. Kim, and H. Kim, 2009, Air quality monitoring system using NDIR-CO2 sensor for underground space based on wireless sensor network, The Institute of Electronics Engineers of Korea-System and Control, 46.4, 28-38. 

  53. Lee, S., S. Jeong, and Ch. Kim, 2009, Design and development of monitoring system for subway station based on USN, J. Korea Multimed. Soc., 12.11, 1629-1639. 

  54. Li, M. and Y. Liu, 2007, Underground structure monitoring with wireless sensor networks, In International Symposium on Information Processing in Sensor Networks, 69-78. 

  55. Li-min, Y., L. Anqi, S. Zheng, and L. Hui, 2008, Design of monitoring system for coal mine safety based on wireless sensor network, In Mechtronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference, 409-414. 

  56. Liu, H., and D. Yang, 2004, GIS-Based mine ventilation network and safety analysis, IEEE International Geoscience and Remote Sensing Symposium Proceedings, 5.199, 2945-2948. 

  57. Liu, H., X. Wu, S. Mao, M. Li, and J. Yue, 2017, A time varying ventilation and dust control strategy based on the temporospatial characteristics of dust dispersion, Minerals, 7.4, 59. 

  58. Mahdavipour, O., T. Mueller-Sim, D. Fahimi, S. Croshere, P. Pillatsch, J. Merukh, V.Z. Baruffa, J. Sabino, K. Tran, G. Alanis, P. Solomon, P. Wright, R.M. White, L. Gundel, and I. Paprotny, 2015, Wireless sensors for automated control of total incombustible content (TIC) of dust deposited in underground coal mines, 2015 IEEE SENSORS, 3-6. 

  59. Massanes, M.B., L.S. Pera, and J.O. Moncunill, 2015, Ventilation management system for underground environments, Tunnelling and Underground Space Technology, 50, 516-522. 

  60. Mcdaniel, K., I.J. Duckworth, and B.S. Prosser, 1996, Evaluation of Different Airflow Sensors at the WIPP Facility, In Preceedings of the 8th U.S. mine ventilation symposium, Rolla, Missouri. SME, 519-525. 

  61. McDaniel, K.H., 1988, Real-time psychrometric data collection, Min. Eng., Trans. Soc. Min. Metall. Explor. Inc., October, 74-77. 

  62. McDaniel, K.H., and K.G. Wallace, 1997, Real-time mine ventilation simulation, Min. Eng., Trans. Soc. Min. Metall. Explor. Inc., August, 71-75. 

  63. Mcpherson, M.J., 1993, Subsurface Ventilation and Environmental Engineering, Springer Science & Business Media. 

  64. Min, B., Y. Kim, G. Kim, and D. Shin, 2012, Implementation of sensor network for subway air-quality monitoring system, In Information and control symposium, 326-327. 

  65. Minhas, U.I., I.H. Naqvi, S. Qaisar, K. Ali, S. Shahid, and M.A. Aslam, 2017, A WSN for monitoring and event reporting in underground mine environments, IEEE Syst. J., 12.1, 485-496. 

  66. Misra, P., S. Kanhere, D. Ostry, and S. Jha, 2010, Safety assurance and rescue communication systems in high-stress environments: A mining case study, IEEE Commun. Mag., 48.4, 66-73. 

  67. Moridi, M.A., M. Sharifzadeh, Y. Kawamura, and H.D. Jang, 2018b, Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments), Tunnelling and Underground Space Technology, 73, 127-138. 

  68. Moridi, M.A., Y. Kawamura, M. Sharifzadeh, E.K. Chanda, and H. Jang, 2014, An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee, Tunnelling and Underground Space Technology, 43, 362-369. 

  69. Moridi, M.A., Y. Kawamura, M. Sharifzadeh, E.K. Chanda, M. Wagner, and H. Okawa, 2018a, Performance analysis of ZigBee network topologies for underground space monitoring and communication systems, Tunnelling and Underground Space Technology, 71, 201-209. 

  70. Moridi, M.A., Y. Kawamura, M. Sharifzadeh, E.K. Chanda, M. Wagner, H. Jang, and H. Okawa, 2015, Development of underground mine monitoring and communication system integrated ZigBee and GIS, Int. J. Min. Sci. Technol., 25.5, 811-818. 

  71. MSHA (Mine Safety and Health Administration), 2001, 30 CFR Part 72 Diesel Particulate Matter Exposure of Coal Miners; Proposed Rule, Fed. Regist., 68, 5526. 

  72. Muduli, L., P.K. Jana, and D.P. Mishra, 2017, A novel wireless sensor network deployment scheme for environmental monitoring in longwall coal mines, Process Saf. Environ. Prot., 109, 564-576. 

  73. Muduli, L., P.K. Jana, and D.P. Mishra, 2018, Wireless sensor network based fire monitoring in underground coal mines: A fuzzy logic approach, Process Saf. Environ. Prot., 113, 435-447. 

  74. Nguyen, V., D. Kim, W. Hur, and C. Lee, 2018, Experimental and CFD study on the exhaust efficiency of a smoke control fan in blind entry development sites, Tunnel and Underground Space, 28.1, 38-58. 

  75. Niu, X., X. Huang, Z. Zhao, Y. Zhang, C. Huang, and L. Cui, 2007, The design and evaluation of a wireless sensor network for mine safety monitoring, In Global Telecommunications Conference, 2007. GLOBECOM'07. IEEE, Vol. 12, 1291-1295. 

  76. Noll, J., S. Janisko, and S.E. Mischler, 2013, Real-time diesel particulate monitor for underground mines, Analytical Methods, 5.12, 2954-2963. 

  77. Osunmakinde, I.O., 2013, Towards safety from toxic gases in underground mines using wireless sensor networks and ambient intelligence, Int. J Distrib Sens Netw., 9.2, 159273. 

  78. Park, D., H. Kang, and C. Lee, 2017, A comparative study on the auxiliary fan pressure and the ventilation efficiency in large-opening limestone mine airways, Tunnel and Underground Space, 27.1, 1-11. 

  79. Park, D., Y. Cho, S. Kwon, E. Park, and M. Ok, 2008, Study of air quality monitoring based on wireless sensor network, Proceedings of the KSR Conference. Korean Society for Railway, 1756-1760. 

  80. Park, D.S., Y.M. Cho, S.B. Kwon, and E.Y. Park, 2007, Air pollution monitoring of subway using wireless sensor network, Proceedings of the KSR Conference. Korean Society for Railway, 984-988. 

  81. Park, S., J. Roh, and J. Kim, 2014, A study on evaluation of thermal environment using heat stress indices for deep coal mine in Korea, Tunnel and Underground Space, 24.2, 166-175. 

  82. Queiroz, D.V., M.S. Alencar, R.D. Gomes, I.E. Fonseca, and C. Benavente-Peces, 2017, Survey and systematic mapping of industrial wireless sensor networks, Journal of Network and Computer Applications, 97, 96-125. 

  83. Ranjan, A., H.B. Sahu, and P. Misra, 2016, Wireless Sensor Networks: An emerging solution for underground mines, International Journal of Applied Evolutionary Computation, 7.4., 1-27. 

  84. Reddy, A.C., 2009, Development of a coal reserve GIS model and estimation of the recoverability and extraction costs, Master of Science Thesis, Department of Mining Engineering, West Virginia University. 

  85. Roghanchi, P., K.C. Kocsis, and A. Powell, 2017b, Evaluation of the atmospheric and underground environmental conditions by means of continuous climatic monitoring systems - Lessons learned, In 16th North American Mine Ventilation Symposium, Golden, CO, June 17-22, 9-16. 

  86. Roghanchi, P., K.C. Kocsis, G. Danko, and A. Powell, 2017a, Underground climatic monitoring and modeling: Are we missing something?, In 7th International Multidisciplinary Symposium, Vol. 18, 133-139. 

  87. Rowland, J.H., L. Yuan, R.A. Thomas, and L. Zhou, 2018, Evaluation of different carbon monoxide sensors for battery charging stations, In SME Annual Meeting, 1-6. 

  88. Ruckman, R. and B. Prosser, 2010, Integrating Ventilation Monitoring Sensor Data with Ventilation Computer Simulation Software at the Waste Isolation Pilot Plant Facility, In 13th United States/North American Mine Ventilation Symposium, Vol. 96, 237-242. 

  89. Salap, S., M.O. Karslioglu,, and N. Demirel, 2009, Development of a GIS-based monitoring and management system for underground coal mining safety, Int. J. Coal Geol., 80.2, 105-112. 

  90. Samosuyev, V., 2010, Bluetooth Low Energy compared to Zigbee and Bluetooth Classic, Mikkeli University of Applied Sciences. 

  91. Song, D., Y. Kim, T. Kim, and S. Kim, 2016, A study of efficient ventilation system in deep mines, Clean Technology, 22.3, 168-174. 

  92. Stolkin, R., L. Vickers, and J.V. Nickerson, 2007, Using environmental models to optimize sensor placement, IEEE Sens. J., 7.3, 319-320. 

  93. Sun, Y., Y. He, B. Zhang, and X. Liu, 2011, An energy efficiency clustering routing protocol for WSNs in confined area, Min. Sci. Technol. (China), 21.6, 845-850. 

  94. Sunkpal, M., P. Roghanchi, and K.C. Kocsis, 2017, A Method to Protect Mine Workers in Hot and Humid Environments, Safety and Health at Work, 1-10. 

  95. Takiff, L. and G. Aiken, 2010, A real-time, wearable elemental carbon monitor for use in underground mines, 13th United States/North American Mine Ventilation Symposium, 137-141. 

  96. Vutukuri, V.S. and R.D. Lama, 1986, Environmental Engineering in Mines, Cambridge University Press. 

  97. Wang, D., H. Feng, T. Xing, and J. Sun, 2011, Optimized anchor nodes placement for underground mine localization system based on ZigBee technology, Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on. IEEE., 478-481. 

  98. Wang, K., S. Jiang, X. Ma, L. Hu, Z. Wu, H. Shao, W. Zhang, X. Pei, Y. Wang, 2016, An automatic approach for the control of the airflow volume and concentrations of hazardous gases in coal mine galleries, J. Loss Prev. Process. Ind., 43, 676-687. 

  99. Wang, X., J. Lizier, and O. Obst, 2008, Spatiotemporal anomaly detection in gas monitoring sensor networks, Proceeding EWSN'08 Proceedings of the 5th European Conference on Wireless Sensor Networks, 90-105. 

  100. Wu, H.W. and A.D.S. Gillies, 2005, Real-time airflow monitoring and control within the mine production system, Proceedings, 8th Int. Mine Vent. Congress, Brisbane, QLD. 2005, 383-389. 

  101. Wu, H.W. and A.D.S. Gillies, 2008, Developments in real time personal diesel particulate monitoring in mines, 12th U.S./North American Mine Ventilation Symposium, 629-636. 

  102. Wu, L., Z. Jiang, W. Cheng, X. Zuo, D. Lv, and Y. Yao, 2011, Major accident analysis and prevention of coal mines in China from the year of 1949 to 2009, Min. Sci. Technol. (China), 21.5, 693-699. 

  103. Yang, D., Y. Chen, and K. Wang, 2010, Design of environmental monitoring node of coal mine based on CC2530, Computer Application and System Modeling (ICCASM), 2010 International Conference on. IEEE, Vol. 14, 418-421. 

  104. Yick, J., B. Mukherjee, and D. Ghosal, 2008, Wireless sensor network survey, Computer Networks, 52.12, 2292-2330. 

  105. Yu, Y., J. Roh, and J. Kim, 2013, A study on thermodynamic natural ventilation analysis by the field survey of underground mines in Korea, Tunnel and Underground Space, 23.4, 288-296. 

  106. Zhou, L., L. Yuan, R. Thomas, and A. Iannacchione, 2017, Determination of velocity correction factors for real-time air velocity monitoring in underground mines, Int. J. Coal. Sci. Technol., 4.4, 322-332. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로