$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

농업생태계의 복잡한 상호작용을 고려하여 작물생육을 모의하기 위해 객체지향형 작물모델을 개발하였다. 대기, 작물, 토양 및 재배관리를 대표하는 Atmosphere 클래스, Plant 클래스, Soil 클래스, Grower 클래스가 설계되었다. 또한, 이들 클래스들이 구현된 객체들을 하나의 시스템으로 연계하여 통합시스템을 구축하였다. 사례연구로써, 농촌진흥청 본원의 전작시험 포장에서 1985년부터 1986년까지 수행된 실험에서 얻어진 옥수수와 콩의 수량 관측자료와 통합시스템으로 모의된 결과값을 비교하였다. 단작과 간작조건에서 통합시스템으로 예측된 옥수수의 수량은 4% 이내의 낮은 오차율로 모의되었다. 이삭중을 제외한 지상부 건물중의 경우, 옥수수와 콩의 관측값보다 과소추정되는 경향이 있었다. 예를 들어, 옥수수의 경우 잎과 줄기의 생체중 모의값은 관측값에 비해 약 31% 적게 추정되었다. 옥수수가 수확된 시점에서 같이 수확이 된 콩의 경우, 옥수수 보다는 비교적 작은 과소추정 오차를 가졌다. 비록 간단한 형태의 모델들로 구성되었으나, 이러한 모델을 활용하여 복잡한 상호작용을 모의할 수 있는 통합시스템이 개발될 수 있다는 것을 보여주었다. 추후 연구에서, 보다 상세한 작물 생육 모의를 위해 기존의 과정중심의 작물 모델을 역설계하여 통합시스템을 구축하는 연구가 진행되어야 할 것으로 사료되었다.

Abstract AI-Helper 아이콘AI-Helper

An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent wea...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
작물 생육 모델의 특징은 ? 작물 생육 모델은 대기 및 토양조건에 따른 작물의 반응을 모의할 수 있기 때문에 실제 포장실험을 수행하기 어려운 조건에서도 작물의 생육양상을 예측할 수있다(White et al. 2011; Lee et al.
개별 작물모델들의 특징은? 개별 작물모델들은 독립적인 시스템으로 구성되어 있기 때문에, 이들 모델들을 또다른 시스템으로 통합 하는 것은 어렵다. 예를 들어, 간작조건에서의 생산성을 모의하기 위해 Oryza 2000 모델과 DSSAT 모델에서 얻어지는 작물 생육 추정값들이 상호 교환되어야 한다.
객체지향형 작물모델을 각각 어떻게 구축하고 통합하여 무엇을 만들었는가? 농업생태계의 복잡한 상호작용을 고려하여 작물생 육을 모의하기 위해 객체지향형 작물모델을 개발하였다. 대기, 작물, 토양 및 재배관리를 대표하는 Atmos phere 클래스, Plant 클래스, Soil 클래스, Grower 클래 스가 설계되었다. 또한, 이들 클래스들이 구현된 객체 들을 하나의 시스템으로 연계하여 통합시스템을 구축 하였다. 사례연구로써, 농촌진흥청 본원의 전작시험 포장에서 1985년부터 1986년까지 수행된 실험에서 얻어진 옥수수와 콩의 수량 관측자료와 통합시스템으로 모의된 결과값을 비교하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (37)

  1. Basso, B., J. T. Ritchie, F. J. Pierce, R. P. Braga, and J. W. Jones, 2001: Spatial validation of crop models for precision agriculture. Agricultural Systems 68(2), 97-112. 

  2. Bouman, B. A. M., and H. H. van Laar, 2006: Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems 87(3), 249-273. 

  3. Bulatewicz, T., A. Allen, J. M. Peterson, S. Staggenborg, S. M. Welch, and D. R. Steward, 2013: The simple script wrapper for OpenMI: enabling interdisciplinary m odeling studies. Environmental Modelling & Software 39, 283-294. 

  4. Castronova, A. M., J. L. Goodall, and M. B. Ercan, 2013: Integrated modeling within a hydrologic information system: an OpenMI based approach. Environmental Modelling & Software 39, 263-273. 

  5. Chimonyo, V. G. P., A. T. Modi, and T. Mabhaudhi, 2016: Simulating yield and water use of a sorghum-cowpea intercrop using APSIM. Agricultural Water Management 177, 317-328. 

  6. Gregersen, J. B., P. J. A. Gijsbers, and S. J. P. Westen, 2007: OpenMI: Open modelling interface. Journal of Hydroinformatics 9(3), 175pp. 

  7. Hedley, C., 2015: The role of precision agriculture for improved nutrient management on farms. Journal of the Science of Food and Agriculture 95, 12-19. 

  8. Irmak, A., J. W. Jones, W. D. Batchelor, and J. O. Paz, 2001: Estimating spatially variable soil properties for application of crop models in precision farming. Transactions of the ASAE 44(5), 1343-1353. 

  9. Jiang, P., M. Elag, P. Kumar, S. D. Peckham, L. Marini, and L. Rui, 2017: A service-oriented architecture for coupling web service models using the Basic Model Interface (BMI). Environmental Modelling & Software 92, 107-118. 

  10. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. C. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. 

  11. Keating, B. A., P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18(3-4), 267-288. 

  12. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) 

  13. Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun, 2013: The Influence of shifting planting date on cereal grains production under the projected climate change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39. 

  14. Kim, K. S., H. Kim, B. Y. Lee, C. K. Lee, and J. Kim. 2015: Requirement analysis of a system to predict crop yield under climate change. Korean Journal of Agricultural and Forest Meteorology 17(1), 1-14. 

  15. Kim, J., W. Sang, P. Shin, H. Cho, M. Seo, B. Yoo, and K. S. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18(4), 257-264. 

  16. Kropff, M. J., and C. J. T. Spitters, 1991: A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Research 31(2), 97-105. 

  17. Lee, C. K., J. Kim, J. Shon, W. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) 

  18. Lee, C.-K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246. 

  19. Lee, S. Y., C. K. Hong, H. B. Lee, D. Y. Kim, S. K. Ha, S. K. Han, B. L. Huh, and S. B. Kim, 1987: Intercropping with soybean and cowpea for increasing feed value of corn stover. Journal of Korean Society of Crop Science 32(2), 144-150. (in Korean with English abstract) 

  20. Li, C., S. Frolking, and R. Harriss, 1994: Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles 8(3), 237-254. 

  21. Lobov, A., J. L. M. Lastra, and R. Tuokko, 2005: Application of UML in plant modeling for model-based verification: UML translation to TNCES. 3rd IEEE International Conference on Industrial Informatics(INDIN), Perth, WA, Australia, 495-501. 

  22. McCown, R. L., G. L. Hammer, J. N. G. Hargreaves, D. P. Holzworth, and D. M. Freebairn, 1996: APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems 50(3), 255-271. 

  23. Monteith, J. L., 1965: Light distribution and photosynthesis in field crops. Annals of Botany 29(1), 17-37. 

  24. Moore, R. V., and C. I. Tindall, 2005: An overview of the open modelling interface and environment (the OpenMI). Environmental Science & Policy 8(3), 279-286. 

  25. Myers, T. S., I. Atkinson, and R. Johnstone, 2010: Supporting coral reef ecosystems research through modelling a reusable ontology framework. Applied Artificial Intelligence 24, 77-101. 

  26. Peckham, S. D., E. W. H. Hutton, and B. Norris, 2013: A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences 53, 3-12. 

  27. Raes, D., P. Steduto, T. C. Hsiao, and E. Fereres, 2017: AquaCrop, Version 6.0. Reference Manual. FAO, Land and Water Division, Rome, Italy. 

  28. Steduto, P., T. C. Hsiao, D. Raes, and E. Fereres, 2009: AquaCrop- The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101(3), 426-437. 

  29. Sui, D. Z., and R. C. Maggio, 1999: Integrating GIS with hydrological modeling: practices, problems, and prospects. Computers, Environment and Urban Systems 23(1), 33-51. 

  30. Thorp, K. R., J. W. White, C. H. Porter, G. Hoogenboom, G. S. Nearing, and A. N. French, 2012: Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations. Computers and Electronics in Agriculture 81, 62-71. 

  31. Tsubo, M., S. Walker, and H. O. Ogindo, 2005: A simulation model of cereal-legume intercropping systems for semi-arid regions. Field Crops Research 93(1), 10-22. 

  32. Volk, M., J. Hirschfeld, A. Dehnhardt, G. Schmidt, C. Bohn, S. Liersch, and P. W. Gassman, 2008: Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin. Ecological Economics 66(1), 66-76. 

  33. White, J. W., G. Hoogenboom, B. A. Kimball, and G. W. Wall, 2011: Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124(3), 357-368. 

  34. Woli, P., J. W. Jones, K. T. Ingram, and C. W. Fraisse, 2012: Agricultural reference index for drought (ARID). Agronomy Journal 104, 287-300. 

  35. Whish, J. P. M., N. I. Herrmann, N. A. White, A. D. Moore, and D. J. Kriticos, 2015: Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling & Software 72, 418-425. 

  36. Zhang, X., J. H. Lee, Y. Abawi, Y. H. Kim, D. McClymont, and H. D. Kim, 2007: Testing the simulation capability of APSIM-ORYZA under different levels of nitrogen fertiliser and transplanting time regimes in Korea. Animal Production Science 47(12), 1446-1454. 

  37. Zhang, L., W. van der Werf, L. Bastiaans, S. Zhang, B. Li, J. H. J. Spiertz, 2008: Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107(1), 29-42. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로