$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

정삼투 공정의 유도용질로서의 식물 화학물질 기반의 탄닌산 유도체
Phytochemical-based Tannic Acid Derivatives as Draw Solutes for Forward Osmosis Process 원문보기

멤브레인 = Membrane Journal, v.28 no.3, 2018년, pp.157 - 168  

김태형 (동아대학교 화학공학과) ,  주창하 (동아대학교 화학공학과) ,  강효 (동아대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

우리는 정삼투 공정의 유도용질로서 잠재적인 활용 가능성을 확인하기 위해 식물화학물질인 tannic acid (TA)에 알칼리 염 처리한 alkali tannate 염 중 하나인 potassium tannate (TA-K)를 평가하였다. TA-K의 정삼투 특성과 회수 특성은 체계적으로 조사되었다. 정삼투 공정을 active layer facing feed solution (AL-FS) 방식으로 적용했을 때, TA-K 유도용액의 투수량은 TA 유도용액의 투수량 보다 훨씬 많은 반면, TA 유도용액의 투수량이 거의 확인되지 않았다. 100 mM 저농도에서의 TA-K 유도용액의 삼투압(1,135 mOsmol/kg)은 NaCl 수용액의 삼투압(173 mOsmol/kg)의 약 6.5배로 확인되었다. 100 mM 농도의 TA-K의 투수량과 specific salt flux (6.14 LMH, 1.26 g/L)는 동일한 농도의 NaCl 유도용액의 투수량과 specific salt flux (2.46 LMH, 2.63 g/L)의 약 2.5배 및 0.5배로 각각 확인되었다. TA-K를 재사용하기 위해, 금속 이온 침전법을 이용하여 TA-K유도용질을 침전시킨 후, membrane filtration을 이용하여 유도용질을 회수하였다. 이 연구는 식물화학물질을 정삼투 공정의 유도용질로서의 적용 가능성을 보여준다.

Abstract AI-Helper 아이콘AI-Helper

Potassium tannate (TA-K), which is prepared by base treatment of the bio-renewable tannic acid (TA), was evaluated for its potential application as a draw solute for water purification by forward osmosis. The forward osmosis and recovery properties of TA-K were systematically investigated. In the ap...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, we developed a potassium tannate (TA-K) product, a phytochemical polyphenol, to identify the potential use of phytochemicals as draw solutes in forward osmosis, and investigated the forward osmosis and recovery characteristics of TA-K.
  • In this study, we prepared and characterized potassium tannate (TA-K) as the draw solute of a forward osmosis process. The forward osmosis properties of the potassium tannate draw solution were superior to that of the conventional draw solute, i.
  • The rheological properties of the samples were investigated by measuring the shear rate changes using a cone-and-plate rheometer with a diameter of 40 mm and a cone angle of 2° (TA Instrument, AR G2, stress control type).
  • To identify the molecular structure of the draw solute, we used Fourier-transform infrared (FT-IR) spectroscopy (Thermo Fisher Scientific, NICOLET 380) in the wavelength range from 4,000 cm-1 to 400 cm-1 with a resolution of 4 cm-1 in the attenuated total reflection (ATR) mode. The thermal properties of the samples were analyzed by measuring weight changes with varying temperatures using a thermogravimetric analyzer (SETARAM Instrumentation, SETSYS Evolution). To identify and quantitatively analyze carbon, hydrogen, and oxygen atoms constituting the draw solute, we used an elemental analyzer (Elementar Analysensysteme GmbH, Vario Micro Cube).
  • The osmotic pressure was measured using an osmometer (KNAUER, SEMIMICRO OSMOMETER K-7400) by the freezing point depression method. The water flux and reverse salt flux were determined by measuring the height difference between the solution levels on the two sides of a home-made U-shaped tube and the conductivity difference before and after the experiment, respectively.
  • The higher the specific salt flux, the greater is the loss of draw solute, and thus, the lower is the process efficiency. To identify the applicability of TA-K as draw solute with a higher osmotic pressure than that of other two solutions, the water flux, reverse salt flux, and specific salt flux were determined for various concentrations of each draw solution. As shown in Fig.

이론/모형

  • Conductivity was measured using a conductivity meter (METTLER TOLEDO, Seven2Go pro). The osmotic pressure was measured using an osmometer (KNAUER, SEMIMICRO OSMOMETER K-7400) by the freezing point depression method. The water flux and reverse salt flux were determined by measuring the height difference between the solution levels on the two sides of a home-made U-shaped tube and the conductivity difference before and after the experiment, respectively.
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. N. Akther, A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, and S. W. Hasan, "Recent advancements in forward osmosis desalination: A review", Chem. Eng. J., 281, 502 (2015). 

  2. M. Wilf, "Future of the osmotic processes", Desalin. Water Treat., 15, 292 (2010). 

  3. L. Chekli, S. Phuntsho, H. K. Shon, S. Vigneswaran, J. Kandasamy, and A. Chanan, "A review of draw solutes in forward osmosis process and their use in modern applications", Desalin. Water Treat., 43, 167 (2012). 

  4. Q. C. Ge, M. M. Ling, and T. S. Chung, "Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future", J. Membrane Sci., 442, 225 (2013). 

  5. B.-M. Jun, S.-W. Han, Y.-K. Kim, N. T. P. Nga, H.-G. Park, and Y.-N. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015). 

  6. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). 

  7. R. E. Kravath and J. A. Davis, "Desalination of sea water by direct osmosis", Desalination, 16, 151 (1975). 

  8. J. O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976). 

  9. S. Phuntsho, H. K. Shon, S. Hong, S. Lee, and S. Vigneswaran, "A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions", J. Membr. Sci., 375, 172 (2011). 

  10. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005). 

  11. G. W. Batchelder, "Process for the demineralization of water", US Patent 3,171,799, March 2 (1965). 

  12. H. Luo, Q. Wang, T. C. Zhang, T. Tao, A. Zhou, L. Chen, and X. Bie, "A review on the recovery methods of draw solutes in forward osmosis", J. Water Process Eng., 4, 212 (2014). 

  13. Z. Wei, Q. Yu, and Z. Gan, "Thermosensitive block copolymers PEG-b-PBEMAGG containing functional pendant amino groups", Macromol. Res., 20, 313 (2012). 

  14. T. Maeda, Y. Akasaki, K. Yamamoto, and T. Aoyagi, "Stimuli-responsive coacervate induced in binary functionalized poly(N-isopropylacrylamide) aqueous system and novel method for preparing semi-IPN microgel using the coacervate", Langmuir, 25, 9510 (2009). 

  15. K. Soppimath, T. Aminabhavi, A. Dave, S. Kumbar, and W. Rudzinski, "Stimulus-responsive "Smart" hydrogels as novel drug delivery systems", Drug Dev. Ind. Pharm., 28, 957 (2002). 

  16. J. Kim, H. Kang, Y.-S. Choi, Y. A. Yu, and J.-C. Lee, "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications", Desalination, 381, 84 (2016). 

  17. Y. Zhong, X. Feng, W. Chen, X. Wang, K.-W. Huang, Y. Gnanou, and Z. Lai, "Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water", Environ. Sci. Technol., 50, 1039 (2016). 

  18. J. Kim, J. S. Chung, H. Kang, Y. A. Yu, W. J. Choi, H. J. Kim, and J.-C. Lee, "Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes", Macromol. Res., 22, 963 (2014). 

  19. D. Li, X. Zhang, J. Yao, G. P. Simon, and H. Wang, "Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination", Chem. Commun., 47, 1710 (2011). 

  20. H. W. Bai, Z. Y. Liu, and D. D. Sun, "Highly water soluble and recovered dextran coated $Fe_3O_4$ magnetic nanoparticles for brackish water desalination", Sep. Purif. Technol., 81, 392 (2011). 

  21. Q. C. Ge, J. C. Su, T.-S. Chung, and G. Amy, "Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes", Ind. Eng. Chem. Res., 50, 382 (2011). 

  22. M. M. Ling, K. Y. Wang, and T.-S. Chung, "Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse", Ind. Eng. Chem. Res., 49, 5869 (2010). 

  23. P. Dey and E. L. Izake, "Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent: Effect of polymer conformation", Desalination, 373, 79 (2015). 

  24. W. T. Hough, "Forward-osmosis solvent extraction", US Patent 3,721,621, March 20 (1973). 

  25. B. S. Frank, "Desalination of sea water", US Patent 3,670,897, June 20 (1972). 

  26. M. L. Stone, C. Rae, F. F. Stewart, and A. D. Wilson, "Switchable polarity solvents as draw solutes for forward osmosis", Desalination, 312, 124 (2013). 

  27. Q. Ge, J. Su, G. L. Amy, and T.-S. Chung, "Exploration of polyelectrolytes as draw solutes in forward osmosis processes", Water Res., 46, 1318 (2012). 

  28. E. Tian, C. Hu, Y. Qin, Y. Ren, X. Wang, X. Wang, P. Xiao, and X. Yang, "A study of poly(sodium 4-styrenesulfonate) as draw solute in forward osmosis", Desalination, 360, 130 (2015). 

  29. S. Adham, J. Oppenheimer, L. Liu, and M. Kumar, "Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis", Water Reuse Foundation, Alexandria (2007). 

  30. A. Achilli, T. Y. Cath, and A. E. Childress, "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 364, 233 (2010). 

  31. Q. Ge and T.-S. Chung, "Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment", Chem. Commun., 51, 4854 (2015). 

  32. Y. T. Zhao, Y. W. Ren, X. Z. Wang, P. Xiao, E. L. Tian, X. Wang, and J. Li, "An initial study of EDTA complex based draw solutes in forward osmosis process", Desalination, 378, 28 (2016). 

  33. A. Razmjou, M. R. Barati, G. P. Simon, K. Suzuki, and H. T. Wang, "Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination", Environ. Sci. Technol., 47, 6297 (2013). 

  34. S. K. Yen, M. Su, K. Y. Wang, and T.-S. Chung, "Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis", J. Membr. Sci., 364, 242 (2010). 

  35. M. N. Belgacem and A. Gandini, "Monomers, polymers and composites from renewable resources, Elsevier, Amsterdam (2011). 

  36. K. Khanbabaee and T. van Ree, "Tannins: Classification and definition", Nat. Prod. Rep., 18, 641 (2001). 

  37. V. L. Singleton, "Naturally occurring food toxicants: Phenolic substances of plant origin common in foods", Adv. Food Res., 27, 149 (1981). 

  38. M. C. Figueroa-Espinoza, A. Zafimahova, P. G. M. Alvarado, E. Dubreucq, and C. Poncet-Legrand, "Grape seed and apple tannins: Emulsifying and antioxidant properties", Food Chem., 178, 38 (2015). 

  39. K.-T. Chung, S. E. Stevens Jr, W.-F. Lin, and C. I. Wei, "Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds", Lett. Appl. Microbiol., 17, 29 (1993). 

  40. K.-T. Chung, G. Zhao, E. Stevens Jr, B. A. Simco, and C. I. Wei, "Growth inhibition of selected aquatic bacteria by tannic acid and related compounds", J. Aquat. Anim. Health, 7, 46 (1995). 

  41. E. M. Daniel and G. D. Stoner, "The effects of ellagic acid and 13-cis-retinoic acid on N-nitrosobenzylmethylamine-induced esophageal tumorigenesis in rats", Cancer Lett., 56, 117 (1991). 

  42. I. Gulcin, Z. Huyut, M. Elmastas, and H. Y. Aboul-Enein, "Radical scavenging and antioxidant activity of tannic acid", Arabian J. Chem., 3, 43 (2010). 

  43. C. A. Rice-Evans, N. J. Miller, and G. Paganga, "Structure-antioxidant activity relationships of flavonoids and phenolic acids", Free Radical Biol. Med., 20, 933 (1996). 

  44. J. S. Wright, E. R. Johnson, and G. A. DiLabio, "Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants", J. Am. Chem. Soc., 123, 1173 (2001). 

  45. B. Badhani, N. Sharma, and R. Kakkar, "Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications", RSC Adv., 5, 27540 (2015). 

  46. J. Iglesias, E. G. De Saldana, and J. Jaen, "On the tannic acid interaction with metallic iron", Hyperfine Interact., 134, 109 (2001). 

  47. Z. Xia, A. Singh, W. Kiratitanavit, R. Mosurkal, J. Kumar, and R. Nagarajan, "Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid", Thermochim. Acta, 605, 77 (2015). 

  48. M. Ozacar, C. Soykan, and I. A. Sengil, "Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins", J. Appl. Polym. Sci., 102, 786 (2006). 

  49. Q. Ge, P. Wang, C. Wan, and T.-S. Chung, "Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment", Environ. Sci. Technol., 46, 6236 (2012). 

  50. W. D. Kemper and N. A. Evans, "Movement of water as effected by free energy and pressure gradients III. restriction of solutes by membranes", Soil Sci. Soc. Am. J., 27, 485 (1963). 

  51. N. T. Hancock and T. Y. Cath, "Solute coupled diffusion in osmotically driven membrane processes", Environ. Sci. Technol., 43, 6769 (2009). 

  52. W. A. Phillip, J. S. Yong, and M. Elimelech, "Reverse draw solute permeation in forward osmosis: modeling and experiments", Environ. Sci. Technol., 44, 5170 (2010). 

  53. T. K. Ross and R. A. Francis, "The treatment of rusted steel with mimosa tannin", Corros. Sci., 18, 351 (1978). 

  54. F. Paiva-Martins and M. H. Gordon, "Interactions of ferric ions with olive oil phenolic compounds", J. Agric. Food Chem., 53, 2704 (2005). 

  55. P. Kraal, B. Jansen, K. G. J. Nierop, and J. M. Verstraten, "Copper complexation by tannic acid in aqueous solution", Chemosphere, 65, 2193 (2006). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로