$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges 원문보기

Journal of power electronics, v.18 no.4, 2018년, pp.975 - 984  

Cetin, Sevilay (Technology Faculty, Pamukkale University)

Abstract AI-Helper 아이콘AI-Helper

This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current ...

주제어

참고문헌 (26)

  1. A. Emadi, S. S. Williamson, and A. Khaligh, "Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems," IEEE Trans. Power Electron., Vol. 21, No. 3, pp. 567-577, May 2006. 

  2. B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, and K. A. Shiozaki, "A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices," IEEE Trans. Power Electron., Vol. 29, No. 5, pp. 2606-2617, Jan. 2014. 

  3. M. Yilmaz and P.T. Krein, "Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles," IEEE Trans. Power Electron., Vol. 28, No.5, pp. 2151-2169, May 2013. 

  4. M. Grenier, M. H. Aghdam, and T. Thiringer, "Design of on-board charger for plug-in hybrid electric vehicle," in Proc. Power Electronics, Machine and Drives Conference, pp. 1-6, 2010. 

  5. S. Haghbin, K. Khan, S. Lundmark, M. Alakula, O. Carlson, M. Leksell, and O. Wallmark, "Integrated chargers for EV's and PHEV's: examples and new solutions," in Proc. Int. Conf. Electrical Machines Conference, pp. 1-6, 2010. 

  6. A. Emadi, Y. J. Lee, and K. Rajashekara, "Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles," IEEE Trans. Ind. Appl., Vol. 55, No. 3, pp. 2237-2245, May 2006. 

  7. F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. A. Dunford, "An LLC resonant DC-DC converter for wide output voltage range battery charging applications," IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5437-5445, Mar. 2013. 

  8. J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, "Design methodology of LLC resonant converters for electric vehicle battery chargers," IEEE Trans. Veh. Technol., Vol. 63, No. 4, pp. 1581-1592, May 2014. 

  9. T. Zhang, J. Fu, Q. Qian, W. Sun, and S. Lu, "Dead-time for zero-voltage-switching in battery chargers with the phase-shifted full-bridge topology: Comprehensive theoretical analysis and experimental verification," J. Power Electron., Vo. 16, No. 2, pp 425-435, Mar. 2016. 

  10. Z. Fang, T. Cai, S. Duan, and C. Chen, "Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency," IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5469-5483, May 2015. 

  11. S. Cetin and A. Astepe, "A phase shifted full bridge converter design for electrical vehicle battery charge applications based on wide output voltage range," in Proc. of 21st Applied Electronics, pp. 51-56, 2016. 

  12. L. R. Steigerwald, "A comparison of half bridge resonant converter topologies," IEEE Trans. Power Electron., Vol. 3, No. 2, pp. 174-182, Apr. 1988. 

  13. J. F. Lazar and R. Martinelli, "Steady-state analysis of the LLC series resonant converter," in Proc. Applied Power Electronics Conference and Exposition APEC '01In Proc. 16th Annu. IEEE APEC Expo, 2001. 

  14. R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W.-K. Ling, and J. Lam, "Computer aided design and optimization of high efficiency LLC series resonant converter," IEEE Trans. Power Electron. Vol. 27, No. 7, pp. 3243-3256, Jul. 2012. 

  15. J. W. Kim, D. Y. Kim, C. E. Kim, and G. W. Moon, "Simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system," IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1562-1566, Apr. 2014. 

  16. A. F. Bakan, N. Altintas, and I. Aksoy, "An improved PSFB PWM DC-DC converter for high-power and frequency applications," IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 64-74, Jan. 2013. 

  17. S. Cetin, "High efficiency design considerations for the self-driven synchronous rectified phase shifted full bridge converters of server power systems," J. Power Electron., Vol. 15, No. 3, pp. 634-643, May 2015. 

  18. C. Zhao, X. Wu, P. Meng, and Z. Qian, "Optimum design consideration and implementation of a novel synchronous rectified soft-switched phase-shift full-bridge converter for low-output-voltage high-output-current applications," IEEE Trans. Power Electron., Vol. 24, No. 2, pp. 388-397, Feb. 2009. 

  19. U. Badstuebner, J. Biela, and J. W. Kolar, "Design of an 99%-efficient, 5kW, phase-shift PWM DC-DC converter for telecom applications," in Proc. Applied Power Electronics Conference and Exposition (APEC), pp. 626-634, 2010. 

  20. D. Y. Kim, C. E. Kim, and G. W. Moon, "Variable delay time method in the phase-shifted full-bridge converter for reduced power consumption under light load conditions," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5120-5127, Nov. 2013. 

  21. T. J. Han, J. Preston, S. J. Jang, and D. Ouwerkerk, "A high density 3.3 kW isolated on-vehicle battery charger using SiC SBDs and SiC DMOSFETs," in Proc. of IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-5, 2014. 

  22. M. Chen and G.A. Rincon-Mora, "Accurate, compact and power-efficient Lithium-ion battery charger circuit," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 53, No. 11, pp. 1180-1184, Nov. 2006. 

  23. S. Dearborn, "Charging Lithium-ion batteries for maximum run times," Power Electron. Technol. Mag., Vol. 31, pp. 40-49, Apr. 2005. 

  24. A. R. Hefner, R. Singh, J. S. Lai, D. W. Berning, S. Bouche, and C. Chapuy, "SiC power diodes provide breakthrough performance for a wide range of applications," IEEE Trans. Power Electron., Vol. 16, No. 2, pp. 273-280, Mar. 2001. 

  25. A. M. Abou-Alfotouh, A. V. Radun, H. Chang, and C. Winterhalter, "A 1-MHz hard-switched silicon carbide DC-DC converter," IEEE Trans. Power. Electron., Vol. 21, No. 4, pp. 880-889, Jul. 2006. 

  26. J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, "An assessment of wide bandgap semiconductors for power devices," IEEE Trans. Power Electron, Vol. 18, No. 3, pp. 907-914, May 2003. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로