$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

하둡 및 Spark 기반 공간 통계 핫스팟 분석의 분산처리 방안 연구

Distributed Processing Method of Hotspot Spatial Analysis Based on Hadoop and Spark

초록

공간통계 분석중 하나인 핫스팟 분석은 "인접해 있는 것은 멀리 있는 것 보다 더 연관성이 있다"는 법칙에 따라 공간속성이나 사건의 공간 패턴을 쉽게 파악할 수 있는 기법 중 하나 이지만, 공간의 인접성이 고려되어야 하므로 분산 처리하기 용이하지 않다. 본 논문에서는 핫스팟 분석의 분산처리 방안을 기술하고 성능을 하둡 및 인메모리 기반인 Spark으로 평가한 결과 단일 시스템 대비 하둡기반 처리는 625.89%, Spark기반 처리는 870.14%의 성능향상을 확인하였으며, 하둡 기반과 Spark기반의 비교에서는 대용량 데이터 셋을 처리 할수록 Spark기반의 성능향상율이 높아짐을 확인하였다.

Abstract

One of the spatial statistical analysis, hotspot analysis is one of easy method of see spatial patterns. It is based on the concept that "Adjacent ones are more relevant than those that are far away". However, in hotspot analysis is spatial adjacency must be considered, Therefore, distributed processing is not easy. In this paper, we proposed a distributed algorithm design for hotspot spatial analysis. Its performance was compared to standalone system and Hadoop, Spark based processing. As a result, it is compare to standalone system, Performance improvement rate of Hadoop at 625.89% and Spark at 870.14%. Furthermore, performance improvement rate is high at Spark processing than Hadoop at as more large data set.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일