$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Celecoxib의 apoptotic 및 autophagic cell death 유도에 의한 항암제 다제내성 암세포의 17-allylamino-17-demethoxygeldanamycin 감수성 증강
Celecoxib Enhances Susceptibility of Multidrug Resistant Cancer Cells to 17-Allylamino-17-demethoxy geldanamycin through Dual Induction of Apoptotic and Autophagic Cell Death 원문보기

생명과학회지 = Journal of life science, v.28 no.7 = no.219, 2018년, pp.778 - 785  

문현정 (부산대학교 의학전문대학원 의과학과 생화학교실) ,  박소영 (부산대학교 의학전문대학원 의과학과 생화학교실) ,  이수훈 (부산대학교 의학전문대학원 의과학과 생화학교실) ,  강치덕 (부산대학교 의학전문대학원 의과학과 생화학교실) ,  김선희 (부산대학교 의학전문대학원 의과학과 생화학교실)

초록
AI-Helper 아이콘AI-Helper

오토파지(Autophagy, 자가포식)는 복합적인 신호과정으로, 암세포의 증식 억제 및 항암제에 대한 내성 획득의 상반적인 조절에도 관여한다. 오토파지의 암 억제 효과는 아팝토시스(apoptosis)와 상호협력으로 오토파지성세포 사멸의 유도에 기인된다. 본 연구에서는 NSAID 계열의 다기능 약물인 celecoxib (CCB)이 아팝토시스 및 오토파지의 복합적인 유도로, 항암제 다제내성(multidrug resistant, MDR) 암세포의 Hsp90 molecular chaperone inhibitor인 17-allylamino-17-demethoxygeldanamycin (17-AAG)에 대한 감수성을 증가시키는 활성이 있음을 밝혔다. 17-AAG 처리에 의한 항암제 다제내성 암세포의 변이형p53 분해 및 caspase-3 활성은 CCB 처리로 촉진되었다. MCF7-MDR세포에서 Z-DEVD-FMK 처리에 의한 caspase-3-매개의 아팝토시스 경로 차단은 CCB 유도의 세포 사멸을 완전히 차단시키지 못함을 알 수 있었으며, 또한 17-AAG과 CCB 병합 처리에 의한 오토파지 활성화는 Z-DEVD-FMK에 의해 방해되지 않는 것을 알 수 있었다. 본 연구의 결과를 토대로, CCB의 오토파지 유도 활성은 항암제 다제내성 암의 Hsp90 inhibitor에 대한 감수성 증가를 위한 약물 개발에, CCB가 효과적인 병용 약물로서 제안 될 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Autophagy is a complex signaling process and has been implicated in tumor suppression and anticancer therapy resistance. Autophagy can produce tumor-suppressive effect by inducing autophagic cell death, either in collaboration with apoptosis. In this current study, we found that celecoxib (CCB), a n...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To compare the Hsp90 inhibitor 17-AAG-induced apoptosis between HeyA8/MDR and HeyA8 cells, we estimated the percentage of early and late apoptotic cells in 17-AAG-exposed cells using conventional flow cytometry. In this experiment, treatment of HeyA8 or HeyA8/MDR cells, with gradually increasing concentrations of 17-AAG for 24 hr was accompanied by increased in the percentage of cells in both the lower and upper right quadrants of the Annexin/PI analysis. HeyA8/MDR cells were more resistant to 17-AAGinduced apoptosis than HeyA8 cells (Fig.
  • It has been reported that autophagy can be a doubleedged sword for multidrug resistant (MDR) tumors and it protects cancer cells from chemotherapeutics but can also kill MDR cancer [11], and nonsteroidal anti-inflammatory drugs (NSAIDs) such as celecoxib (CCB), meloxicam, sulindac, have diverse effects in cancer that are mediated by the autophagy pathway [26]. To explore the relationship between autophagy and MDR, we measured the basal and CCB-induced autophagy activities in MDR cells and their drug-sensitive parental counterparts. We compared basal and CCB-induced levels of autophagic indicators such as two MAP1-LC3 forms (LC3-I and LC3-II) and p62 (high LC3-II/low p62 expression, indicative of intact activated autophagy), and autophagy-related genes such as Beclin-1 and Atg7 in between MDR and their parental cells.

대상 데이터

  • (Farmingdale, New York, USA). Celecoxib (CCB), cycloheximide (CHX) and LY294002 were purchased from Sigma-Aldrich (St. Louis, MO, USA). Caspase-3 inhibitor Z-DEVD-FMK was purchased from R & D systems (Minneapolis, MN, USA).
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Chen, N. and Karantza, V. 2011. Autophagy as a therapeutic target in cancer. Cancer Bio. Thr. 11, 157-168. 

  2. Cheng, J., Chen, J., Xie, B. and Wei, H. L. 2013. Acquired multidrug resistance in human K562/ADM cells is associated with enhanced autophagy. Toxicol. Mech. Methods 23, 678-683. 

  3. Choudhury, S., Kolukula, V. K., Preet, A., Albanese, C. and Avantaggiati, M. L. 2013. Dissecting the pathways that destabilize mutant p53 The proteasome or autophagy? Cell Cycle 12, 1022-1029. 

  4. Garufi, A,, Pucci, D., D'Orazi, V., Cirone, M., Bossi, G., Avantaggiati, M. L. and D'Orazi, G. 2014. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis. 5, e1271. 

  5. Helgason, G. V., Karvela, M. and Holyoake, T. L.2011. Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 118, 2035-2043. 

  6. Huang, J. M., Sheard, M. A., Ji, L. Y., Sposto, R. and Keshelava, N. 2010. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol. Cancer Ther. 9, 3289-3301. 

  7. Kaewpiboon, C., Surapinit, S., Malilas, W., Moon, J., Phuwapraisirisan, P., Tip-Pyang, S., Johnston, R. N., Koh, S. S., Assavalapsakul, W. and Chung, Y. H. 2014. Feroniellin A-induced autophagy causes apoptosis in multidrug- resistant human A549 lung cancer cells. Int. J. Oncol. 44, 1233-1242. 

  8. Kastan, M. B. and Berkovich, E. 2007. p53: a two-faced cancer gene. Nat. Cell Biol. 9, 489-491. 

  9. Kim, H. B., Lee, S. H., Um, J. H., Oh, W. K., Kim, D. W., Kang, C. D. and Kim, S. H. 2015. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1. Oncotarget 6, 36202-36218. 

  10. Kroemer, G., Marino, G. and Levine, B. 2010. Autophagy and the integrated stress response. Mol. Cell. 40, 280-293. 

  11. Li, Y. J., Lei, Y. H., Yao, N., Wang, C. R., Hu, N., Ye, W. C., Zhang, D. M. and Chen, Z. S. 2017. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 36, 52. 

  12. Lin, K., Rockliffe, N., Johnson, G. G., Sherrington, P. D. and Pettitt, A. R. 2008. Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene 27, 2445-2455. 

  13. Liu, M., Li, C. M., Chen, Z. F., Ji, R., Guo, Q. H., Li, Q., Zhang, H. L. and Zhou, Y. N. 2014. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int. J. Mol. Med. 33, 1451-1458. 

  14. Mori, M., Hitora, T., Nakamura, O., Yamagami, Y., Horie, R., Nishimura, H. and Yamamoto, T. 2015. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int. J. Oncol. 46, 47-54. 

  15. Muller, P., Hrstka, R., Coomber, D., Lane, D. P. and Vojtesek, B. 2008. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371-3383. 

  16. Nazim, U. M. D., Moon, J. H., Lee, J. H., Lee, Y. J., Seol, J. W., Eo, S. K., Lee, J. H. and Park, S. Y. 2016. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis. Oncotarget 7, 23468-23481. 

  17. Neckers, L. and Workman, P. 2012. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 18, 64-76. 

  18. Pan, Y. Z., Wang, X., Bai, H., Wang, C. B., Zhang, Q. and Xi, R. 2015. Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin. Genet. Mol. Res. 14, 5621-5629. 

  19. Piper, P. W. and Millson, S. H. 2011. Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals (Basel) 4, 1400-1422. 

  20. Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B. and Tsujimoto, Y. 2004. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 6, 1221-1228. 

  21. Shimizu, S., Yoshida, T., Tsujioka, M. and Arakawa, S. 2014. Autophagic cell death and cancer. Int. J. Mol. Sci. 15, 3145-3153. 

  22. Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., Han, W., Lou, F., Yang, J., Zhang, Q., Wang, X., He, C. and Pan, H. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4, e838. 

  23. Takara, K., Hayashi, R., Kokufu, M., Yamamoto, K., Kitada, N., Ohnishi, N. and Yokoyama, T. 2009. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-Glycoprotein/MDR1 in Caco-2 cells. Drug Chem. Toxicol. 32, 332-337. 

  24. Wan, X. M., Zheng, F., Zhang, L., Miao, Y. Y., Man, N. and Wen, L. P. 2011. Autophagy-mediated chemosensitization by cysteamine in cancer cells. Int. J. Cancer 129, 1087-1095. 

  25. Yoshii, S. R. and Mizushima, N. 2017. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865. 

  26. Yu, C., Li, W. B., Liu, J. B., Lu, J. W. and Feng, J. F. 2018. Autophagy: novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 7, 471-484. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로