$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구
Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative 원문보기

생명과학회지 = Journal of life science, v.28 no.7 = no.219, 2018년, pp.864 - 873  

파티 카라데니즈 (부산대학교 유기소재시스템공학과) ,  김한성 (부산대학교 유기소재시스템공학과)

초록
AI-Helper 아이콘AI-Helper

나노 입자는 화장품, 식품, 기계, 화학 산업 등에 다양한 용도로 활용되고 있으며, 그 응용분야가 광범히 하여 나노 입자 사용에 대한 관심과 연구가 지속적으로 증가하고 있는 추세이다. 특히 금속나노 입자 중 하나인 은나노 입자는 항균 및 항진균 효과가 뛰어나 의류, 실내 공기필터, 증류필터 등 다양한 방면에 활용되고 있다. 하지만 은나노 입자의 지속적인 노출 시, 입자 크기와 노출방식에 따라 인체에 독성을 유발하는 것으로 알려져 있어 친환경적이고 생물학적으로 안전한 천연물 유래 소재를 활용한 은나노 입자의 기술개발이 필요하다. 천연물이 적용된 실내필터와 의류는 생산의 용이성, 제품 내구성 및 항균 활성에서 은나노 적용제품과 비교될 수 있는 것으로 나타고 있다. 본 연구에서는 은나노의 생체 내 미치는 독성 메커니즘에 대해 알아보고 은나노의 대안으로 항균 활성을 지닌 천연물의 항균 활성에 대해 기술하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially n...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In conclusion, this compact review was aimed to promote the potential of natural product-origin antimicrobial agents in antimicrobial fabrics and filtrations. Although, both organic and inorganic silver nanoparticles exert very efficient antimicrobial activity when applied to fabrics and filtration units, studies clearly indicated the lack of assessment on their toxic effects.
  • In the light of toxicity risks of SNPs mentioned in this review, natural antimicrobial agents are again gaining attention due to their efficient yet safe utilization for ensuring bacteria-free quality of indoor air, water and fabrics. Therefore, literature consists of several studies that focuses on the possibility of natural-origin antibacterial substances to be applied to filters and fabrics.
본문요약 정보가 도움이 되었나요?

참고문헌 (65)

  1. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J. and Hong, Y. 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404-410. 

  2. Ahearn, D. G. 1997. Fungal colonization of air filters and insulation in a multi-story office building: Production of volatile organics. Curr. Microbiol. 35, 305-308. 

  3. Ali, S. W., Purwar, R., Joshi, M. and Rajendran, S. 2014. Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21, 2063-2072. 

  4. Ao, C. H. and Lee, S. C. 2005. Indoor air purification by photocatalyst $TiO_2$ immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 60, 103-109. 

  5. Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A. and Tarlo, S. M. 2008. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 121, 585-591. 

  6. Braydich-Stolle, L., Hussain, S., Schlager, J. J. and Hofmann, M. C. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412-419. 

  7. Cha, K., Hong, H. W., Choi, Y. G., Lee, M. J., Park, J. H., Chae, H. K., Ryu, G. and Myung, H. 2008. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 30, 1893-1899. 

  8. Christen, V. and Fent, K. 2012. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 87, 423-434. 

  9. Daisey, J. M., Angell, W. J. and Apte, M. G. 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13, 53-64. 

  10. Duran, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L. and Esposito, E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203-208. 

  11. El-Shishtawy, R. M., Asiri, A. M., Abdelwahed, N. A. M. and Al-Otaibi, M. M. 2011. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18, 75-82. 

  12. Ferrero, F., Periolatto, M., Vineis, C. and Varesano, A. 2014. Chitosan coated cotton gauze for antibacterial water filtration. Carbohydr. Polym. 103, 207-212. 

  13. Filipak Neto, F., Cardoso da Silva, L., Liebel, S., Voigt, C. L. and Oliveira Ribeiro, C. A. 2018. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons. Toxicol. Mech. Methods 28, 69-78. 

  14. Foarde, K. K., Hanley, J. T. and Veeck, A. C. 2000. Efficacy of antimicrobial filter treatments. ASHRAE J. 42, 52-58. 

  15. Greulich, C., Kittler, S., Epple, M., Muhr, G. and Koller, M. 2009. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck's Arch. Surg. 394, 495-502. 

  16. Gao, Y. and Cranston, R. 2008. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78, 60-72. 

  17. Guo, D., Zhao, Y., Zhang, Y., Wang, Q., Huang, Z., Ding, Q., Guo, Z., Zhou, X., Zhu, L. and Gu, N. 2014. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J. Biomed. Nanotechnol. 10, 669-678. 

  18. Gupta, D. and Haile, A. 2007. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 69, 164-171. 

  19. Gupta, D. and Laha, A. 2007. Antimicrobial activity of cotton fabric treated with Quercus infectoria extract. Indian J. Fibre Text. Res. 32, 88-92. 

  20. Han, B. 2015. Investigation of antimicrobial activity of grapefruit seed extract and its application to air filters with comparison to propolis and shiitake. Aerosol Air Qual. Res. 2015, 1035-1044. 

  21. Han, S. and Yang, Y. 2005. Antimicrobial activity of wool fabric treated with curcumin. Dye. Pigment. 64, 157-161. 

  22. Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139. 

  23. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 19, 975-983. 

  24. Hwang, G. B., Heo, K. J., Yun, J. H., Lee, J. E., Lee, H. J., Nho, C. W., Bae, G. N. and Jung, J. H. 2015. Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS One 10, e0126481. 

  25. Hwang, G. B., Sim, K. M., Bae, G. N. and Jung, J. H. 2015. Synthesis of hybrid carbon nanotube structures coated with Sophora flavescens nanoparticles and their application to antimicrobial air filtration. J. Aerosol Sci. 86, 44-54. 

  26. Hyun, J., Lee, B., Ryu, H., Sung, J., Chung, K. and Yu, I. 2008. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol. Lett. 182, 24-28. 

  27. Jain, P. and Pradeep, T. 2005. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59-63. 

  28. Javid, A., Raza, Z. A., Hussain, T. and Rehman, A. 2014. Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric. J. Microencapsul. 31, 461-468. 

  29. Jones, A. P. 1999. Indoor air quality and health. Atmos. Environ. 33, 4535-4564. 

  30. Jung, J. H., Hwang, G. B., Park, S. Y., Lee, J. E., Nho, C. W., Lee, B. U. and Bae, G. N. 2011. Antimicrobial air filtration using airborne Sophora Flavescens natural-product nanoparticles. Aerosol Sci. Technol. 45, 1510-1518. 

  31. Kawata, K., Osawa, M. and Okabe, S. 2009. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051. 

  32. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. and Cho, M. H. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95-101. 

  33. Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S. and Yu, I. J. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in SpragueDawley rats. Inhal. Toxicol. 20, 575-583. 

  34. Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y. and Yoshikawa, T. 2010. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6, 570-574. 

  35. Kulthong, K., Maniratanachote, R., Kobayashi, Y., Fukami, T. and Yokoi, T. 2012. Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica 42, 854-862. 

  36. Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W. and Maniratanachote, R. 2010. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part. Fibre Toxicol. 7, 8. 

  37. Lam, P. K., Chan, E. S. Y., Ho, W. S. and Liew, C. T. 2004. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br. J. Biomed. Sci. 61, 125-127. 

  38. Lee, H. Y., Choi, Y. J., Jung, E. J., Yin, H. Q., Kwon, J. T., Kim, J. E., Im, H. T., Cho, M. H., Kim, J. H., Kim, H. Y. and Lee, B. H. 2010. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J. Nanoparticle Res. 12, 1567-1578. 

  39. Li, A., Liu, Z., Zhu, X., Liu, Y. and Wang, Q. 2010. The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts. Energy Build. 42, 449-454. 

  40. Mpenyana-Monyatsi, L., Mthombeni, N. H., Onyango, M. S. and Momba, M. N. B. 2012. Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int. J. Environ. Res. Public Health 9, 244-271. 

  41. Nadiger, V. G. and Shukla, S. R. 2015. Antimicrobial activity of silk treated with Aloe vera. Fibers Polym. 16, 1012-1019. 

  42. Nam, C. W., Kim, Y. H. and Ko, S. W. 1999. Modification of polyacrylonitrile (PAN) fiber by blending withN-(2-hydroxy)propyl-3-trimethyl- ammonium chitosan chloride. J. Appl. Polym. Sci. 74, 2258-2265. 

  43. Noris, F., Siegel, J. A. and Kinney, K. A. 2011. Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmos. Environ. 45, 338-346. 

  44. Ozyildiz, F., Karagonlu, S., Basal, G., Uzel, A. and Bayraktar, O. 2013. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Lett. Appl. Microbiol. 56, 168-179. 

  45. Paddle-Ledinek, J. E., Nasa, Z. and Cleland, H. J. 2006. Effect of different wound dressings on cell viability and proliferation. Plast. Reconstr. Surg. 117, 110S-120S. 

  46. Pasquarella, C., Sansebastiano, G. E., Ferretti, S., Saccani, E., Fanti, M., Moscato, U., Giannetti, G., Fornia, S., Cortellini, P., Vitali, P. and Signorelli, C. 2007. A mobile laminar airflow unit to reduce air bacterial contamination at surgical area in a conventionally ventilated operating theatre. J. Hosp. Infect. 66, 313-319. 

  47. Purwar, R. and Joshi, M. 2004. Recent developments in antimicrobial finishing of textiles - A review. AATCC Rev. 4, 22-26. 

  48. Rahman, M. F., Wang, J., Patterson, T. A., Saini, U. T., Robinson, B. L., Newport, G. D., Murdock, R. C., Schlager, J. J., Hussain, S. M. and Ali, S. F. 2009. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187, 15-21. 

  49. Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76-83. 

  50. Samberg, M. E., Oldenburg, S. J. and Monteiro-Riviere, N. A. 2010. Evaluation of silver nanoparticle toxicity in skin in vitro and keratinocytes in vitro. Environ. Health Perspect. 118, 407-413. 

  51. Sarkar, R. K., Purushottam, D. and Chauhan, P. D. 2003. Bacteria-resist finish on cotton fabrics using natural herbal extracts. Indian J. Fibre Text. Res. 28, 322-328. 

  52. Shin, Y., Yoo, D. I. and Min, K. 1999. Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. J. Appl. Polym. Sci. 74, 2911. 

  53. Sim, K. M., Kim, K. H., Hwang, G. B., Seo, S., Bae, G. N. and Jung, J. H. 2014. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Sci. Total Environ. 493, 291-297. 

  54. Singh, R., Jain, A., Panwar, S., Gupta, D. and Khare, S. K. 2005. Antimicrobial activity of some natural dyes. Dye. Pigment. 66, 99-102. 

  55. Soto, K., Garza, K. M. and Murr, L. E. 2007. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 3, 351-358. 

  56. Su, W. 1996. Indoor air pollution. Resour. Conserv. Recycl. 16, 77-91. 

  57. Sung, J. H., Ji, J. H., Yoon, J. U., Kim, D. S., Song, M. Y., Jeong, J., Han, B. S., Han, J. H., Chung, Y. H., Kim, J., Kim, T. S., Chang, H. K., Lee, E. J., Lee, J. H. and Yu, I. J. 2008. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 20, 567-574. 

  58. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P. and Heyder, J. 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 109, 547-551. 

  59. Verdenelli, M. C., Cecchini, C., Orpianesi, C., Dadea, G. M. and Cresci, A. 2003. Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94, 9-15. 

  60. Walentowska, J. and Foksowicz-Flaczyk, J. 2013. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeterior. Biodegradation 84, 407-411. 

  61. Wisser, D., Wisser, F. M., Raschke, S., Klein, N., Leistner, M., Grothe, J., Brunner, E. and Kaskel, S. 2015. Biological chitin-MOF composites with hierarchical pore systems for air-filtration applications. Angew. Chemie Int. Ed. Engl. 54, 12588- 12591. 

  62. Woo, C. G., Kang, J. S., Kim, H. J., Kim, Y. J. and Han, B. 2015. Treatment of air filters using the antimicrobial natural products propolis and grapefruit seed extract for deactivation of bioaerosols. Aerosol Sci. Technol. 49, 611-619. 

  63. Wu, P. C., Li, Y. Y., Chiang, C. M., Huang, C. Y., Lee, C. C., Li, F. C. and Su, H. J. 2005. Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings. Indoor Air 15, 19-26. 

  64. Xu, Y., Raja, S., Ferro, A. R., Jaques, P. A., Hopke, P. K., Gressani, C. and Wetzel, L. E. 2010. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health. Build. Environ. 45, 330-337. 

  65. Yu, B. F., Hu, Z. B., Liu, M., Yang, H. L., Kong, Q. X. and Liu, Y. H. 2009. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32, 3-20. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로