$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Three Degree of Freedom Acoustic Energy Harvester Using Improved Helmholtz Resonator

International journal of precision engineering and manufacturing, v.19 no.1, 2018년, pp.143 - 154  

Izhar, Izhar (Department of Mechanical Engineering, CECOS University of IT and Emerging Sciences) ,  Khan, Farid Ullah (Institute of Mechatronics Engineering, University of Engineering and Technology)

Abstract AI-Helper 아이콘AI-Helper

This paper presents the development of a broadband, multi-frequency acoustic energy harvester. The devised energy harvester contains an optimized Helmholtz resonator with conical cavity and a piezoelectric composite plate. The shape and dimensions of the resonator are selected based on the 3D pressu...

Keyword

참고문헌 (42)

  1. Khan, F. U., "State of the Art in Acoustic Energy Harvesting," Journal of Micromechanics and Microengineering, Vol. 25, No. 2, Paper No. 023001, 2015. 

  2. Khan, F. U. and Izhar, "Hybrid Acoustic Energy Harvesting Using Combined Electromagnetic and Piezoelectric Conversion," Review of Scientific Instruments, Vol. 87, No. 2, Paper No. 025003, 2016. 

  3. Angelopoulos, C. M., Nikoletseas, S., and Theofanopoulos, G. C., "A Smart System for Garden Watering Using Wireless Sensor Networks," Proc. of the 9th ACM International Symposium on Mobility Management and Wireless Access, pp. 167-170, 2011. 

  4. Khan, F., Sassani, F., and Stoeber, B., "Copper Foil-Type Vibration-Based Electromagnetic Energy Harvester," Journal of Micromechanics and Microengineering, Vol. 20, No. 12, Paper No. 125006, 2010. 

  5. Khan, F., Sassani, F., and Stoeber, B., "Nonlinear Behaviour of Membrane Type Electromagnetic Energy Harvester Under Harmonic and Random Vibrations," Microsystem Technologies, Vol. 20, No. 7, pp. 1323-1335, 2014. 

  6. Zhou, G., Huang, L., Li, W., and Zhu, Z., "Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey," Journal of Sensors, Vol. 2014, Article ID: 815467, 2014. 

  7. Pillai, M. A. and Deenadayalan, E., "A Review of Acoustic Energy Harvesting," Int. J. Precis. Eng. Manuf., Vol. 15, No. 5, pp. 949-965, 2014. 

  8. Seo, H., Ichida, D., Uchida, G., Kamataki, K., Itagaki, N., et al., "Analysis on the Photovoltaic Property of Si Quantum Dot-Sensitized Solar Cells," Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 339-343, 2014. 

  9. Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., et al., "Electrical Power from Nanotube and Graphene Electrochemical Thermal Energy Harvesters," Advanced Functional Materials, Vol. 22, No. 3, pp. 477-489, 2012. 

  10. Kim, G.-W., Kim, J., and Kim, J.-H., "Flexible Piezoelectric Vibration Energy Harvester Using a Trunk-Shaped Beam Structure Inspired by an Electric Fish Fin," Int. J. Precis. Eng. Manuf., Vol. 15, No. 9, pp. 1967-1971, 2014. 

  11. Truitt, A. and Mahmoodi, S. N., "A Review on Active Wind Energy Harvesting Designs," Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1667-1675, 2013. 

  12. Horowitz, S. B., Sheplak, M., Cattafesta III, L. N., and Nishida, T., "A MEMS Acoustic Energy Harvester," Journal of Micromechanics and Microengineering, Vol. 16, No. 9, pp. S174-S181, 2006. 

  13. Jung, S. S., Kim, Y. T., Lee, Y. B., Kim, H. C., Shin, S. H., and Cheong, C., "Spectrum of Infrasound and Low-Frequency Noise in Passenger Cars," Journal of the Korean Physical Society, Vol. 55, No. 6, pp. 2405-2410, 2009. 

  14. Barlett, M. L. and Wilson, G. R., "Characteristics of Small Boat Acoustic Signatures," Vol. 112, No. 5, 2002. (DOI: 10.1121/1.4778778) 

  15. Yokoyama, Y. and Hashimoto, K., "Development of Low-Noise Air Conditioning Ducts," East Japan Railway Culture Foundation, Vol. 16, pp. 63-66, 2010. 

  16. Gerges, N. Y., "Noise Sources," http://www.who.int/occupational_health/publications/noise5.pdf (Accessed 28 NOV 2018) 

  17. Greene, C. and Moore, S., "Man-Made Noise," Marine Mammals and Noise, pp. 101-158, 1995. 

  18. Li, B., Laviage, A. J., You, J. H., and Kim, Y.-J., "Harvesting Low-Frequency Acoustic Energy Using Quarter-Wavelength Straight-Tube Acoustic Resonator," Applied Acoustics, Vol. 74, No. 11, pp. 1271-1278, 2013. 

  19. Yang, A., Li, P., Wen, Y., Lu, C., Peng, X., et al., "Note: High-Efficiency Broadband Acoustic Energy Harvesting Using Helmholtz Resonator and Dual Piezoelectric Cantilever Beams," Review of Scientific Instruments, Vol. 85, No. 6, Paper No. 066103, 2014. 

  20. Kimura, S., Tomioka, S., Iizumi, S., Tsujimoto, K., Sugou, T., and Nishioka, Y., "Improved Performances of Acoustic Energy Harvester Fabricated Using Sol/Gel Lead Zirconate Titanate Thin Film," Japanese Journal of Applied Physics, Vol. 50, No. 6S, Paper No. 06GM14, 2011. 

  21. Peng, X., Wen, Y., Li, P., Yang, A., and Bai, X., "A Wideband Acoustic Energy Harvester Using a Three Degree-of-Freedom Architecture," Applied Physics Letters, Vol. 103, No. 16, Paper No. 164106, 2013. 

  22. Lai, T., Huang, C., and Tsou, C., "Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices," Proc. of MEMS/MOEMS Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 28-33, 2008. 

  23. Khan, F. U., "Electromagnetic Energy Harvester for Harvesting Acoustic Energy," Sadhana, Vol. 41, No. 4, pp. 397-405, 2016. 

  24. Wang, W.-C., Wu, L.-Y., Chen, L.-W., and Liu, C.-M., "Acoustic Energy Harvesting by Piezoelectric Curved Beams in the Cavity of a Sonic Crystal," Smart Materials and Structures, Vol. 19, No. 4, Paper No. 045016, 2010. 

  25. Liu, F., Phipps, A., Horowitz, S., Ngo, K., Cattafesta, L., Nishida, T., and Sheplak, M., "Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator," The Journal of the Acoustical Society of America, Vol. 123, No. 4, pp. 1983-1990, 2008. 

  26. Horowitz, S. B., "Development of a MEMS-Based Acoustic Energy Harvester," University of Florida, 2005. 

  27. Iizumi, S., Kimura, S., Tomioka, S., Tsujimoto, K., Uchida, Y., et al, "Lead Zirconate Titanate Acoustic Energy Harvesters Utilizing Different Polarizations on Diaphragm," Procedia Engineering, Vol. 25, pp. 187-190, 2011. 

  28. Wu, L.-Y., Chen, L.-W., and Liu, C.-M., "Acoustic Energy Harvesting Using Resonant Cavity of a Sonic Crystal," Applied Physics Letters, Vol. 95, No. 1, Paper No. 013506, 2009. 

  29. Atrah, A. B. and Salleh, H., "Simulation of Acoustic Energy Harvester Using Helmholtz Resonator with Piezoelectric Backplate," Proc. of the 20th International Congress on Sound and Vibration (ICSV20), pp. 7-11, 2013. 

  30. Li, B., You, J. H., and Kim, Y.-J., "Low Frequency Acoustic Energy Harvesting Using PZT Piezoelectric Plates in a Straight Tube Resonator," Smart Materials and Structures, Vol. 22, No. 5, Paper No. 055013, 2013. 

  31. Li, B., Laviage, A. J., You, J. H., and Kim, Y.-J., "Acoustic Energy Harvesting Using Quarter-Wavelength Straight-Tube Resonator," Proc. of ASME 2012 International Mechanical Engineering Congress and Exposition, pp. 467-473, 2012. 

  32. Khan, F. and Izhar, E., "Acoustic-based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application," International Journal of Materials Science and Engineering, Vol. 1, No. 2, pp. 72-78, 2013. 

  33. Khan, F. U. and Izhar, "Electromagnetic-based Acoustic Energy Harvester," Proc. of 16th International Multi Topic Conference (INMIC), pp. 125-130, 2013. 

  34. Tomioka, S., Kimura, S., Tsujimoto, K., Iizumi, S., Uchida, Y., et al., "Lead-Zirconate-Titanate Acoustic Energy Harvesters with Dual Top Electrodes," Japanese Journal of Applied Physics, Vol. 50, No. 9S2, Paper No. 09ND16, 2011. 

  35. Shinoda, S., Tai, T., Itoh, H., Sugou, T., Ichioka, H., et al., "Lead Zirconate Titanate Acoustic Energy Harvester Proposed for Microelectromechanical System/Ic Integrated Systems," Japanese Journal of Applied Physics, Vol. 49, No. 4S, Paper No. 04DL21, 2010. 

  36. Rossi, M., "Acoustics and Electroacoustics" Artech House Publishers, 1988. 

  37. Noh, S., Lee, H., and Choi, B., "A Study on the Acoustic Energy Harvesting with Helmholtz Resonator and Piezoelectric Cantilevers," Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1629-1635, 2013. 

  38. Nolle, A., "Small-Signal Impedance of Short Tubes," The Journal of the Acoustical Society of America, Vol. 25, No. 1, pp. 32-39, 1953. 

  39. Wangsness, R. K., "Electromagnetic Fields," John Wiley & Sons, 2nd Ed., 1986. 

  40. Ullah, F., Ali, T., and Jamil, K., "Development of a Low Voltage AC to DC Converter for Meso and Micro Energy Harvesters," Journal of Engineering and Applied Sciences (JEAS), Vol. 34, No. 2, pp. 34-46, 2015. 

  41. Lallart, M., Guyomar, D., Richard, C., and Petit, L., "Nonlinear Optimization of Acoustic Energy Harvesting Using Piezoelectric Devices," The Journal of the Acoustical Society of America, Vol. 128, No. 5, pp. 2739-2748, 2010. 

  42. Matsuda, T., Tomii, K., Hagiwara, S., Miyake, S., Hasegawa, Y., et al., "Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester," Proc. of Journal of Physics: Conference Series, Paper No. 012003, 2013. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로