$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암미세환경에서 종양관련대식세포의 역할
Role of Tumor-associated Macrophage in Tumor Microenvironment 원문보기

생명과학회지 = Journal of life science, v.28 no.8 = no.220, 2018년, pp.992 - 998  

민도식 (부산대학교 자연과학대학 분자생물학과)

초록
AI-Helper 아이콘AI-Helper

암세포는 종양의 성장을 지지하는 다양한 성분으로 구성되어 있는 환경에서 자란다. 암미세환경에 존재하는 주요 세포등은 섬유아세포, 내피세포, 면역세포들이며 이들세포들은 암세포들과 서로 소통을 하고 있다 종양조직에 유입된 면역세포중에서 대식세포가 종양미세환경의 주요성분으로서 다양한 면역현상들을 조절한다. 면역세포유입에 의한 암촉진과 항암효과 간의 복잡한 균형은 종양의 성장과 진행에 필요한 만성염증 환경을 생성시킬 수 있다. 대식세포는 M1과 M2 극성화로 규정된 미세환경 신호에 반응하여 기능적으로 다른 프로그램을 작동시킬 수 있다. 종양관련대식세포는 다양한 사이토카인, 케모카인, 단백질분해효소들을 분비함으로써 암 신생혈관형성, 증식, 전이 및 면역억제를 촉진시킨다. 최근에, 종양관련대식세포는 암줄기세포와 상호작용하여 종양의 진행, 전이 및 항암제 내성을 유도하는 것으로 알려져 있다. 종양관련대식세포는 암미세환경을 유지하기위해 면역억제 기능을 획득하며, 종양의 이질성과 가소성의 특성을 갖고 있어 암관련인자 및 감염등의 노출에 의해 서로 다른 극성형질로 리프로그래밍된다. 종양관련대식세포는 기질인자의 자극에 의해 암특이적인 케모카인들을 생성하기 때문에 케모카인은 질병의 활성을 반영하는 바이오마커로 작용할 수 있다. 종양조직에 종양관련대식세포가 많이 유입될수록 환자의 예후가 좋지 않으며 항암치료에 대한 저항성이 생긴다. 따라서 종양에서 대식세포를 표적화하는 항암치료는 유망한 치료전략이 될 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • 교모세포종(glioblastoma) 환자의 혈액에서 유래한 단핵구에서 건강한 정상인의 단핵구보다 더 많은 양의 PD-L1을 발현하였으며, 정상인의 단핵구에 교모세포종 암세포를 키운 배지를 처리하면 PD-L1의 발현이 증가된다는 사실이 밝혀졌다.
  • 모든 종류의 대식세포가 종양조직에 존재하지만 유입된 대식세포가 종양 관련 대식세포의 대부분을 차지하며 종양의 다양한 진행단계에 관여할 것으로 여겨진다.

후속연구

  • 그러나, M1과 M2 대식세포를 특이적으로 제거하여 대식세포의 분극화가 암 촉진에 미치는 영향에 대한 조절기전 연구가 규명되어야 할 것이다.
  • 다양한 암에서, 특히 초기단계에 있는 대식세포의 기원은 아직 확실하지는 않으나, 종양 관련 대식세포의 기원, 유지 및 분화 그리고 작용기전을 이해한다면 암을 촉진하는 대식세포를 표적화하는 치료제 개발에 도움이 될것으로 여겨진다.
  • 종양조직의 암미세환경에 존재하는 종양 관련 대식세포(TAM) 이 암의 개시, 진행, 전이를 유도하는 역할을 하기 때문에 종양 관련 대식세포는 생물학적인 항암 치료 요법의 매력적인 표적이 될 수 있다. 종양 관련 대식세포를 제거하거나 기능을 억제 시키는 방법은 암이 성장하고 전이가 진행되는 과정을 효과적으로 제한시킬 수 있으며 기존의 항암치료 요법과 병합치료를 이용한다면 효과적인 항암치료방법이 될 수 있을 것으로 기대된다.
  • 항암요법에 사용중인 표준 항암치료제와 함께 종양관련 대식세포를 표적화 할 수 있는 치료요법을 병용한다면 항암효능을 증가시킬 수 있을 것으로 기대된다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
암세포는 어떠한 환경에서 자라는가? 암세포는 종양의 성장을 지지하는 다양한 성분으로 구성되어 있는 환경에서 자란다. 암미세환경에 존재하는 주요 세포등은 섬유아세포, 내피세포, 면역세포들이며 이들세포들은 암세포들과 서로 소통을 하고 있다 종양조직에 유입된 면역세포중에서 대식세포가 종양미세환경의 주요성분으로서 다양한 면역현상들을 조절한다.
암미세환경에 존재하는 주요 세포는 무엇이 있는가? 암세포는 종양의 성장을 지지하는 다양한 성분으로 구성되어 있는 환경에서 자란다. 암미세환경에 존재하는 주요 세포등은 섬유아세포, 내피세포, 면역세포들이며 이들세포들은 암세포들과 서로 소통을 하고 있다 종양조직에 유입된 면역세포중에서 대식세포가 종양미세환경의 주요성분으로서 다양한 면역현상들을 조절한다. 면역세포유입에 의한 암촉진과 항암효과 간의 복잡한 균형은 종양의 성장과 진행에 필요한 만성염증 환경을 생성시킬 수 있다.
암미세환경에 존재하는 대식세포 이외에 암미세환경을 구성하는 세포는 무엇이 있는가? 암미세환경에 존재하는 대식세포는 종양의 혈관 생성을 촉진하고 암세포의 이동 및 침윤등을 증가시킨다. 대식세포이외에도 백혈구, 섬유아세포, 혈관내피세포들도 암미세환경을 구성하고 있으며 면역세포들이 암미세환경의 주요 구성성분이다. 이러한 면역세포들이 암세포와 상호작용하여 종양의 개시, 성장, 전이에 영향을 준다[30].
질의응답 정보가 도움이 되었나요?

참고문헌 (34)

  1. Adeegbe, D. O. and Nishikawa, H. 2013. Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190-203. 

  2. Ambade, A., Satishchandran, A., Saha, B., Gyongyosi, B., Lowe, P., Kodys, K., Catalano, D. and Szabo, G. 2016. Hepatocellular carcinoma is accelerated by NASH involving M2 macrophage polarization mediated by hif- $1{\alpha}$ induced IL-10. Oncoimmunology 5, e1221557. 

  3. Belai, E. B., de Oliveira, C. E., Gasparoto, T. H., Ramos, R. N., Torres, S. A., Garlet, G. P., Cavassani, K. A., Silva, J. S. and Campanelli, A. P. 2014. PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis 35, 424-431. 

  4. Bingle, L., Brown, N. J. and Lewis, C. E. 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254-265. 

  5. Biswas, S. K. and Mantovani, A. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896. 

  6. Cha, H. R., Lee, J. H., Hensel, J. A., Sawant, A. B., Davis, B. H., Lee, C. M., Deshane, J. S. and Ponnazhagan, S. 2016. Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages. Prostate 76, 624-636. 

  7. Chen, Y., Zhang, S., Wang, Q. and Zhang, X. 2017. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J. Hematol. Oncol. 10, 36-49. 

  8. Coussens, L. M. and Pollard, J. W. 2011. Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol. 3, a003285. 

  9. De, I., Steffen, M. D., Clark, P. A., Patros, C. J., Sokn, E., Bishop, S. M., Litscher, S., Maklakova, V. I., Kuo, J. S., Rodriguez, F. J. and Collier, L. S. 2016. CSF1 overexpression promotes high-grade glioma formation without impacting the polarization status of glioma-associated microglia and macrophages. Cancer Res. 76, 2552-2560. 

  10. Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., Coussens, L. M., Karin, M., Goldrath, A. W. and Johnson, R. S. 2010. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475. 

  11. Duraiswamy, J., Freeman, G. J. and Coukos, G. 2013. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res. 73, 6900-6912. 

  12. Gajewski, T. F., Schreiber, H. and Fu, Y. X. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014-1022. 

  13. Greaves, P. and Gribben, J. G. 2013. The role of B7 family molecules in hematologic malignancy. Blood 121, 734-744. 

  14. Greten, F. R. and Karin, M. 2004. The IKK/NF-kappaB activation pathway- a target for prevention and treatment of cancer. Cancer Lett. 206, 193-199. 

  15. Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140, 883-899. 

  16. Grivennikov, S. I., Wang, K., Mucida, D., Stewart, C. A., Schnabl, B., Jauch, D., Taniguchi, K., Yu, G. Y., Osterreicher, C. H., Hung, K. E., Datz, C., Feng, Y., Fearon, E. R., Oukka, M., Tessarollo, L., Coppola, V., Yarovinsky, F., Cheroutre, H., Eckmann, L., Trinchieri, G. and Karin, M. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254-258. 

  17. Kong, L., Zhou, Y., Bu., H, Lv, T., Shi, Y. and Yang, J. 2016. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J. Exp. Clin. Cancer Res. 35, 131-142. 

  18. Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C. and Zheng, L. 2009. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327-1337. 

  19. Li, Y., Zheng, Y., Li, T., Wang, Q., Qian, J., Lu, Y., Zhang, M., Bi, E., Yang, M., Reu, F., Yi, Q. and Cai, Z. 2015. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget 6, 24218-24229. 

  20. Loke, P. and Allison, J. P. 2003. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA. 100, 5336-5341. 

  21. Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., Pisarev, V., Sherman, S., Sporn, M. B. and Gabrilovich, D. 2011. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121, 4015-4029. 

  22. Ma, R., Ji, T., Chen, D., Dong, W., Zhang, H., Yin, X., Ma, J., Liang, X., Zhang, Y., Shen, G., Quin, X. and Huang, B. 2016. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. Oncoimmunology 5, e1118599. 

  23. Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V. and Chouaib, S. 2014. PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781-790. 

  24. Noy, R. and Pollard, J. W. 2014. Tumor-associated macrophage: From mechanisms to therapy. Immunity 41, 866-879. 

  25. Poh A. H. and Ernst, M. 2018. Targeting macrophages in Cancer: From Bench to besides. Front Oncol. 8, 49-65. 

  26. Qian, B. Z. and Pollard, J. W. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51. 

  27. Quail, D. F. and Joyce, J. A. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437. 

  28. Rohan, T. E., Xue, X., Lin, H. M., D'Alfonso, T. M., Ginter, P. S., Oktay, M. H., Robinson, B. D., Ginsberg, M., Gertler, F. B., Glass, A. G., Sparano, J. A., Condeelis, J. S. and Jones, J. G. 2014. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl. Cancer Inst. 106, 1-11. 

  29. Sharda, D. R., Yu, S., Ray, M., Squadrito, M. L., De Palma, M., Wynn, T. A., Morris, S. M. Jr. and Hankey, P. A. 2011. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J. Immunol. 187, 2181-2192. 

  30. Teng, F., Tian, W. Y., Wang, Y. M., Zhang, Y. F., Guo, F., Zhao, J., Gao, C. and Xue, F. X. 2016. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J. Hematol. Oncol. 9, 8-23. 

  31. Tripathi, C., Tewari, B. N., Kanchan, R. K., Baghel, K. S., Nautiyal, N., Shrivastava, R., Kaur, H., Bhatt, M. L. and Bhadauria, S. 2014. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 5, 5350-5368. 

  32. Wang, H., Shao, Q., Sun, J., Ma, C., Gao, W., Wang, Q., Zhao, L. and Qu, X. 2016. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology 5, e1122157. 

  33. Yang, L., Wang, F., Wang, L., Huang, L., Wang, J., Zhang, B. and Zhang, Y. 2015. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6, 10592-10603. 

  34. Zhao, P., Gao, D., Wang, Q., Song, B., Shao, Q., Sun, J., Ji, C., Li, X., Li, P. and Qu, X. 2015. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol. Immunol. 12, 692-699. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로