$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MoO2-TiO2 나노섬유 복합체의 가시광선 광촉매 및 슈퍼캐패시터 전극 응용
MoO2-decorated TiO2 Nanofiber Composite as Visible-light Photocatalysts and Electrodes for Supercapacitor Applications

한국섬유공학회지 = Textile science and engineering, v.55 no.4, 2018년, pp.239 - 246  

서수정 (전북대학교 유기소재파이버공학과) ,  암나 투시프 (알바하대학교 과학대학) ,  하산 삼시 (알바하대학교 과학대학) ,  김현철 (청운대학교 융합기술경영학부) ,  길명섭 (전북대학교 유기소재파이버공학과)

Abstract AI-Helper 아이콘AI-Helper

Anchoring zero-dimensional nanoparticles on a one-dimensional nanomaterial is potentially advantageous in many applications. In this work, we successfully synthesized $MoO_2$- decorated $TiO_2$ nanofibers using a hydrothermal method with ethanol as a reducing agent. The samples...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • To get the electrode with high surface area, heterostructure based on one-dimensional (1D) nanostructures will be highly useful as electrode material for supercapacitor application. In this study, we have designed and fabricated a novel MoO2 decorated TiO2 nanocomposite with the aim to get better electrochemical activity than pristine TiO2 and MoO2. The synthesized MoO2 -decorated TiO2 heterostructure can serve as an efficient alternative for practical use in decontamination of water and as an economic, easily available electrode material for supercapacitors.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. W. Liu, J. Cai, and Z. Li, "Self-Assembly of Semiconductor Nanopaticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis", ACS Sus. Chem. Eng., 2015, 3, 277-282. 

  2. C. C. Hu, K. H. Chang, M.-C. Lin, and Y. T. Wu, "Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous $RuO_2$ for Next Generation Supercapacitors", Nano Lett., 2006, 6, 2690-2695. 

  3. T. Brezesinski, J. Wang, J. Polleux, B. Dunn, and S. H. Tolbert, "Templated Nanocrystal-Based Porous $TiO_2$ Films for Next Generation Electrochemical Capacitors", J. Am. Chem. Soc., 2009, 131, 1802-1809. 

  4. R. Liu, W.-D. Yang, L.-S. Qiang, and H.-Y. Liu, "Conveniently Fabricated Heterojunction ZnO/ $TiO_2$ Electrodes Using $TiO_2$ Nanotube Arrays for Dye-sensitized Solar Cells", J. Power Source, 2012, 220, 153-159. 

  5. J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. S. Gu, and Y. Zhang, "Structure and Photocatalytic Activity of Ni-doped ZnO Nanorods", Mater. Res. Bull., 2011, 46, 1207-1210. 

  6. X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductorbased Photocatalytic Hydrogen Generation", Chem. Rev., 2010, 110, 6503-6570. 

  7. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, " $Ag_2O$ / $TiO_2$ Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity", ACS Appl. Mater. Interfaces, 2010, 2, 2385-2392. 

  8. Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, and S.-F. Yin, " $Cu_{2}O/BiVO_{4}$ Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr(VI) under Visible Light", Chem. Eng. J., 2014, 255, 394-402. 

  9. Y. Zhang, Y. Xie, J. Li, T. Bai, and J. Wang, "Photocatalytic Activity and Adsorption Performance of $p-CuBi_2O_4$ /n- $TiO_2$ p-n Heterojunction Composites Prepared by in situ Sol-gel Coating Method", J. Sol-Gel Sci. Technol., 2014, 71, 38-42. 

  10. M. Wang, J. Han, Y. Hu, R. Guo, and Y. Yin, "Carbon-Incorporated NiO/ $TiO_2$ Mesoporous Shells with p-n Heterojunctions for Efficient Visible Light Photocatalysis", ACS Appl. Mater. Interfaces, 2016, 8, 29511-29521. 

  11. W. Lu, L. Qu, K. Henry, and L. Dai, “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes”, J. Power Sources, 2009, 189, 1270-1277. 

  12. A. K. Shukla, S. Sampath, and K. Vijayamohanan, “Elec-Trochemical Supercapacitors: Energy Storate Beyond Batteries”, Current Science, 2000, 79, 1656-1661. 

  13. P. Wang, H. Liu, Q. Tan, and J. Yang, "Ruthenium Oxide-based Nanocomposites with High Specific Surface Area and Improved Capacitance as a Supercapacitor", RSC Adv., 2014, 4, 42839-42845. 

  14. P. F. Wang, H. Liu, Y. X. Xu, Y. F. Chen, J. Yang, and Q. Q. Tan, "Supported Ultrafine Ruthenium Oxides with Specific Capacitance Up to 1099 $Fg^{-1}$ for a Supercapacitor", Electrochim. Acta, 2016, 194, 211-218. 

  15. B. Pal, B. L. Vijayan, S. G. Krishnan, M. Harilal, W. J. Basirun, A. Lowe, M. M. Yusoff, and R. Jose, "Hydrothermal Syntheses of Tungsten Doped $TiO_2$ and $TiO_2/WO_3$ Composite Using Metal Oxide Precursors for Charge Storage Applications", J. Alloys and Compounds, 2018, 740, 703-710. 

  16. P. Prasannalakshmi, N. Shanmugam, and A. S. Kumar, "Electrochemistry of $TiO_2$ /CdS Composite Electrodes for Supercapacitor Applications", J. Appl. Electrochem., 2017, 47, 889-903. 

  17. S. S. Raut, G. P. Patil, P. G. Chavan, and B. R. Sankapal, "Vertically Aligned $TiO_2$ Nanotubes: Highly Stable Electrochemical Supercapacitor", J. Electroanal. Chem., 2016, 780, 197-200. 

  18. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, "Hydrogenated $TiO_2$ Nanotube Arrays for Supercapacitors", Nano Lett., 2012, 12, 1690-1696. 

  19. H. Wang, S. Li, D. Li, Z. Chen, H. K. Liu, and Z. Guo, " $TiO_2$ Coated Three-dimensional Hierarchically Ordered Porous Sulfur Electrode for the Lithium/sulfur Rechargeable Batteries", Energy, 2014, 75, 597-602. 

  20. W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou, and H. L. Zhang, "Enhanced Field Emission from Hydrogenated $TiO_2$ Nanotube Arrays", Nanotechnology, 2012, 23, 455204. 

  21. X. Zhao, C. Johnston, and P. S. Grant, "A Novel Hybrid Supercapacitor with a Carbon Nanotube Cathode and an Iron Oxide/carbon Nanotube Composite Anode", J. Mater. Chem. 2009, 19, 8755-8760. 

  22. X. Hu, W. Zhang, X. Liu, Y. Mei, and Y. Huang, "Nanostructured Mo-based Electrode Materials for Electrochemical Energy Storage", Chem. Soc. Rev., 2015, 44, 2376-2404. 

  23. Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, "Ordered Mesoporous Metallic $MoO_2$ Materials with Highly Reversible Lithium Storage Capacity", Nano Lett., 2009, 9, 4215-4220. 

  24. K. M. Hercule, Q. Wei, A. M. Khan, Y. Zhao, X. Tian, and L. Mai, "Synergistic Effect of Hierarchical Nanostructured $MoO_2/Co(OH)_2$ with Largely Enhanced Pseudocapacitor Cyclability", Nano Lett., 2013, 13, 5685-5691. 

  25. T. Amna, M. S. Hassan, W. S. Shin, H. Van Ba, H. K. Lee, M. S. Khil, and I. Hwang, " $TiO_2$ Nanorods via One-step Electrospinning Technique: A Novel Nanomatrix for Mouse Myoblasts Adhesion and Propagation", Colloids and Surfaces B: Biointerfaces, 2013, 101, 424-429. 

  26. S. K. Meher and G. R. Rao, "Ultralayered $Co_3O_4$ for High-Performance Supercapacitor Applications", J. Phys. Chem. C, 2011, 115, 15646-15654. 

  27. M. S. Hassan, T. Amna, A. Mishra, S. I. Yun, H. C. Kim, H. Y. Kim, and M. S. Khil, "Fabrication, Characterization and Antibacterial Effect of Novel Electrospun $TiO_2$ Nanorods on a Panel of Pathogenic Bacteria", J. Biomed. Nanotechnol., 2012, 8, 394-404. 

  28. Z. Xiang, Q. Zhang, X. Xu, and Q. Wang, "Preparation and Photoelectric Properties of Semiconductor $MoO_2$ Micro/nanospheres with Wide Bandgap", Ceramics International, 2015, 41, 977-981. 

  29. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, "The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of $TiO_2$ Thin Films Prepared by Liquid Phase Deposition", J. Phys. Chem. B, 2003, 107, 13871-13879. 

  30. Z. Li and H. C. Zeng, "Armored MOFs: Enforcing Soft Microporous MOF Nanocrystals with Hard Mesoporous Silica", J. Am. Chem. Soc., 2014, 136, 5631-5639. 

  31. T. Xia, Q. Li, X. Liu, J. Meng, and X. Cao, “Morphology-Controllable Synthesis and Characterization of Single-Crystal Molybdenum Trioxide”, J. Phys. Chem. B, 2006, 110, 2006-2012. 

  32. A. Suzuki, K. Kobayashi, T. Oku, and K. Kikuchi, "Fabrication and Characterization of Porphyrin Dye-sensitized Solar Cells", Mater. Chem. Phys., 2011, 129, 236-241. 

  33. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, "Raman Scattering Study on anatase $TiO_2$ Nanocrystals", J. Phys. D: Appl. Phys., 2000, 33, 912-916. 

  34. N. Li, Y. Li, G. Sun, Y. Ma, T. Chang, S. Ji, H. Yao, X. Cao, S. Bao, and P. Jin, "Selective and Tunable Near-Infrared and Visible Light Transmittance of $MoO_{3-X}$ Nanocomposites with Different Crysatllinity", Chem. Asian J., 2017, 12, 1709-1714. 

  35. T. P. Gujar, W.-Y. Kim, I. Puspitasari, K.-D. Jung, and O.-S. Joo, "Electrochemically Deposited Nanograin Ruthenium Oxide as a Pseudocapacitive Electrode", Int. J. Electrochem. Sci., 2007, 2, 666-673. 

  36. J. Zang, S. J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, C. Q. Sun, J. Guo, and K. Lian, "Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/ $RuO_2$ and Its Electrochemical Supercapacitor", J. Phys. Chem. C, 2008, 112, 14843-14847. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로