$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생물학적 하폐수처리과정에서 N2O 배출 및 저감에 관한 고찰
A Review on Emission and Mitigation of N2O in Biological Wastewater Treatment 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.46 no.3, 2018년, pp.181 - 193  

조경숙 (이화여자대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

아산화질소($N_2O$)는 기후변화를 야기하는 온실가스임과 동시에 오존층을 파괴하는 가스이다. 하폐수 처리시 생물학적 질소 제거 공정에서 주로 배출되는 아산화질소가 환경에 미치는 영향은 매우 중요하므로 대책 수립이 필요하다. 본 논문에서는 하폐수 처리과정의 아산화질소 배출 관련 최신 연구동향을 종합적으로 고찰함으로써, 아산화질소의 배출량 및 생성에 미치는 주요 인자의 영향을 이해하고, 아산화질소 배출 저감 전략 수립에 필요한 정보를 도출하였다. 하폐수 처리공정에서 아산화질소가 배출되는 주요 경로는 hydroxylamine 산화, nitrifier 탈질 및 종속영양 탈질공정의 3가지로 구분된다. 실험실, 파일럿 및 실 규모 하폐수 처리 공정을 대상으로 아산화질소 배출량을 측정한 결과 아산화질소 배출량의 질소 부하량의 0-95%로 변이가 매우 컸다. 실 규모 하폐수 처리공정에서는 질소 부하량의 0-14.6%가 아산화질소로 배출되고, 평균값과 중간값은 각각 1.95%와 0.2%이었다. 아산화질소 배출량에 영향을 미치는 가장 중요한 운전인자는 용존산소와 아질산염 농도 및 COD/N 비율이었다. 아산화질소 배출 저감을 위해 운전인자를 조절하는 다양한 전략이 보고되고 있다. 또한, 하폐수 처리공정에서 아산화질소 배출 저감하기 위한 새로운 전략으로, 높은 아산화질소 환원효소 활성을 가진 미생물을 활용하거나, 기존의 탈질공정 대신 산소발생 탈질공정(oxygenic denitrification)을 도입하는 것이 제안되고 있다.

Abstract AI-Helper 아이콘AI-Helper

Nitrous oxide ($N_2O$) is a potent greenhouse gas as well as an ozone-depleting substance. $N_2O$ is emitted during the biological nitrogen removal process in wastewater treatment systems (WTSs), and has significant environmental impacts. In this study, $N_2O$ emissi...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 생물학적 하폐수 처리과정에서 아산화질소 배출량 및 아산화질소 생성에 미치는 여러 환경인자와 공정인자의 영향에 대한 최신 연구 동향을 정리하였다. 또한, 하폐수 처리과정 아산화질소 배출을 감소시키기 위한 공정 개선 및 생물학적 저감 기술 개발에 관한 동향을 고찰하였다. 본 논문의 종합 고찰 결과는 향후 하폐수 처리과정에서 온실가스인 아산화질소 배출 저감 기술을 개발하고 아산화질소를 포함한 환경기초시설 분야의 온실가스 관리 정책을 수립하는데 활용 가능할 것으로 사료된다.
  • 본 논문에서는 생물학적 하폐수 처리과정에서 아산화질소 배출량 및 아산화질소 생성에 미치는 여러 환경인자와 공정인자의 영향에 대한 최신 연구 동향을 정리하였다. 또한, 하폐수 처리과정 아산화질소 배출을 감소시키기 위한 공정 개선 및 생물학적 저감 기술 개발에 관한 동향을 고찰하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
2011년 대기 중 아산화질소 농도는? 또한, 아산화질소는 성층권 오존층을 파괴하는 물질로[3], 온실가스 관리 분야 뿐 아니라 오존층 연구 분야에서도 아산화질소의 배출 및 거동에 관한 정보는 앞으로 점점 더 중요성이 커질 것으로 전망된다. 1750년 대기 중 아산화질소 농도는 270 ± 7 ppb로 추정되며, 2011년 대기 중 아산화질소 농도는 324.2 ppb이었다[2]. 아산화질소 농도가 증가하는 이유는 화석연료 사용량, 농업 등 인위적인 생물학적 질소 고정량이 증가하고 있으며, 화학공정에 의한 비료 생산량도 증가하고 있기 때문이다[2].
아산화질소 생성이 이루어지는 자연적인 발생원은? 아산화질소 생성과 소멸은 질소의 생지화학적 순환과 연관되어 있는데, 특히 (미)생물에 의한 질산화와 탈질과정에서 주로 생성되고 소멸되기도 한다[4, 5]. 아산화질소의 자연적인 발생원은 열대지역의 토양이 주요한 발생원이고, 해양 및 온대지역 토양 순으로 아산화질소가 많이 배출된다[2]. 아산화질소의 인위적인 발생원은 농경지에서 가장 많이 배출되고(70%), 화석연료 연소와 산업공정(10%), 바이오매스 연소(10%), 대기침적(9%) 및 하폐수 처리공정(3%) 등에서 배출된다[2].
아산화질소 농도가 증가하는 이유는? 2 ppb이었다[2]. 아산화질소 농도가 증가하는 이유는 화석연료 사용량, 농업 등 인위적인 생물학적 질소 고정량이 증가하고 있으며, 화학공정에 의한 비료 생산량도 증가하고 있기 때문이다[2]. 기후변화시나리오 예측에 의하면 2100년 대기 중 아산화질소 농도는 345-435 ppb까지 증가할 것으로 전망되고 있어[2], 아산화질소 배출량을 저감하기 위한 다각적인 측면의 노력이 필요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (88)

  1. Prather MJ, Hsu J, DeLuca NM, Jackman CH, Oman LD, Douglass AR, et al. 2015. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. Atmos. 120: 5693-5705. 

  2. IPCC. 2014. Climate change 2014: mitigation of climate change. In Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlomer S, von Stechow C, Zwickel T, Minx JC (eds.), Contribution of working group III to the fifth assessment. Report of the Intergovernmental Panel on Cli-mate Change. Cambridge University Press, Cambridge. 

  3. Portmann RW, Daniel JS, Ravishankara, AR. 2012. Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367: 1256-1264. 

  4. Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E. 2017. A review on nitrous oxide ( $N_2O$ ) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 596-597: 106-123. 

  5. Duan H, Ye L, Erler D, Ni BJ, Yuan Z. 2017. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review. Water Res. 122: 96- 113. 

  6. Frijns J, Roorda J, Mulder M. 2008. Op weg naar een klimaat- neutrale waterketen. $H_2O$ 41: 36-37. 

  7. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM. 2009. Nitrous oxide emission during waste-water treatment. Water Res. 43: 4093-4103. 

  8. Wunderlin P, Lehmann MF, Siegrist H, Tuzson B, Joss A, Emmenegger L, et al. 2013. Isotope signatures of $N_2O$ in a mixed microbial population system: constraints on $N_2O$ producing pathways in wastewater treatment. Environ. Sci. Technol. 47: 1339-1348. 

  9. Ni BJ, Yuan Z. 2015. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes. Water Res. 87: 336-346. 

  10. Konneke M, Bernhard AE, de la Torre JR, Walker Christopher B, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. 

  11. Park HD, Wells GF, Bae H, Criddle CS, Francis CA. 2006. Occurrence of ammonia-oxidizing Archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72: 5643-5647. 

  12. van Niel EWJ, Arts PAM, Wesselink BJ, Robertson LA, Kuenen JG. 1993. Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiol. Ecol. 102: 109-118. 

  13. Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered micro- bial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 3: 1-24. 

  14. van Benthum WAJ, Garrido JM, Mathijssen JPM, Sunde J, van Loosdrecht MCM, Heijnen JJ. 1998. Nitrogen removal in intermittently aerated biofilm airlift reactor. J. Environ. Eng. 124: 239-248. 

  15. Park KY, Inamori Y, Mizuochi M, Ahn KH. 2000. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. J. Biosci. Bioeng. 90: 247-252. 

  16. Itokawa H, Hanaki K, Matsuo T. 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Res. 35: 657-664. 

  17. Zeng RJ, Yuan Z, Keller J. 2003. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnol. Bioeng. 81: 397-404. 

  18. Lemaire R, Meyer R, Taske A, Crocetti GR, Keller J, Yuan Z. 2006. Identifying causes for $N_2O$ accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol. 122: 62-72. 

  19. Song K, Harper WF, Hori T, Riya S, Hosomi M, Terada A. 2015. Impact of carbon sources on nitrous oxide emission and microbial community structure in an anoxic/oxic activated sludge system. Clean Techn. Environ. Policy 17: 2375-2385. 

  20. Eldyasti A, Nakhla G, Zhu J. 2014. Influence of biofilm thickness on nitrous oxide ( $N_2O$ ) emissions from denitrifying fluidized bed bioreactors (DFBBRs). J. Biotechnol. 192: 281-290. 

  21. Alcantara C, Munoz R, Norvill Z, Plouviez M, Guieysse B. 2015. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater. Bioresour. Technol. 177: 110-117. 

  22. Gabarro J, Gonzalez-Carcamo P, Ruscalleda M, Ganigue R, Gich F, Balaguer MD, et al. 2014. Anoxic phases are the main $N_2O$ contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration. Bioresour. Technol. 163: 92-99. 

  23. Frison N, Chiumenti A, Katsou E, Malamis S, Bolzonella D, Fatone F. 2015. Mitigating off-gas emissions in the biological nitrogen removal via nitrite process treating anaerobic effluents. J. Clean Prod. 93: 126-133. 

  24. Czepiel P, Crill P, Harriss R. 1995. Nitrous oxide emissions from municipal wastewater treatment. Environ. Sci. Technol. 29: 2352-2356. 

  25. Wicht H, Beier M. 1995. $N_2O$ emission aus nitrifizierenden und denitrificierenden Klaranlagen. Korrespondenz Abwasser 42: 404-406. 

  26. Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. 2010. $N_2O$ emissions from activated sludge processes, 2008-2009: Results of a national monitoring survey in the United States. Environ. Sci. Technol. 44: 4505-4511. 

  27. Sommer J, Ciplak A, Sumer E, Benckiser G, Ottow JCG. 1998. Quantification of emitted and retained $N_2O$ in a municipal wastewater treatment plant with activated sludge and nitrifi-cation-denitrification units. Agrobiol. Res. 51: 59-73. 

  28. Kimochi Y, Inamori Y, Mizuochi M, Xu KQ, Matsumura M. 1998. Nitrogen removal and $N_2O$ emission in a full-scale domestic wastewater treatment plant with intermittent aeration. J. Fer-ment. Bioeng. 86: 202-206. 

  29. de Mello WZ, Ribeiro RP, Brotto AC, Kligerman DC, Piccoli AdeS, Oliveira JLM. 2013. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urbanwastewater treatment plant. Quim. Nova 36: 16-20. 

  30. Tumendelger A, Toyoda S, Yoshida N. 2014. Isotopic analysis of $N_2O$ produced in a conventional wastewater treatment system operated under different aeration conditions. Rapid Commun. Mass Spectrom. 28: 1883-1892. 

  31. Aboobakar A, Cartmell E, Stephenson T, Jones M, Vale P, Dotro G. 2013. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Res. 47: 524-534. 

  32. Sun S, Bao Z, Sun D. 2014. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes. Environ. Sci. Pollut. Res. 22: 4222-4229. 

  33. Rodriguez-Caballero A, Aymerich I, Marques R, Poch M, Pijuan M. 2015. Minimizing $N_2O$ emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. Water Res. 71: 1-10. 

  34. Kampschreur MJ, van der Star W, Wielders H, Mulder JW, Jetten M, van Loosdrecht M. 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res. 42: 812-826. 

  35. Castro-Barros C, Daelman M, Mampaey K, van Loosdrecht M, Volcke E. 2015. Effect of aeration regime on $N_2O$ emission from partial nitritation-anammox in a full-scale granular sludge reactor. Water Res. 68: 793-803. 

  36. Tallec G, Garnier J, Billen G, Gousailles M. 2006. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Res. 40: 2972-2980. 

  37. Zhu X, Chen Y. 2011. Reduction of $N_2O$ and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environ. Sci. Technol. 45: 2137-2143. 

  38. Hu Z, Zhang J, Li S, Xie H. 2013. Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ. Sci. Pollut. Res. 20: 1059-1069. 

  39. Zhang X, Wang X, Zhang J, Huang X, Wei D, Lan W, et al. 2016. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). Biore-sour. Technol. 218: 789-795. 

  40. Shen L, Guan Y, Wu G, Zhan X. 2013. $N_2O$ emission from a sequencing batch reactor for biological N and P removal from wastewater. Front. Environ. Sci. Eng. 8: 776-783. 

  41. Chen Y, Wang D, Zheng X, Li X, Feng L, Chen H. 2014. Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor. Chemosphere 109: 56-63. 

  42. Yang HJ, Park JM, Kim MJ. 2008. Estimate of nitrous oxide emis- sion factors from municipal wastewater treatment plants. J. Korean Soc. Environ. Eng. 30: 1281-1286. [Korean Literature] 

  43. Kampschreur M, Poldermans R, Kleerebezem R, van der Star W, Haarhuis R, Abma W, et al. 2009. Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Sci. Technol. 60: 3211-3217. 

  44. Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Wat-son SW. 1980. Production of nitrite and nitrogen oxide ( $N_2O$ ) by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40: 526-532. 

  45. Pijuan M, Tora J, Rodriguez-Caballero A, Cesar E, Carrera J, Perez J. 2014. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater. Water Res. 19: 23-33. 

  46. Otte S, Grobben NG, Robertson LA, Jetten MSM, Kuenen JG. 1996. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl. Environ. Microbiol. 62: 2421-2426. 

  47. Desloover J, de Clippeleir H, Boeckx P, du Laing G, Colsen J, Verstraete W, Vlaeminck SE. 2011. Floc-based sequential partial nitritation and anammox at full scale with contrasting $N_2O$ emissions. Water Res. 45: 2811-2821. 

  48. Castro-Barros C, Daelman M, Mampaey K, van Loosdrecht M, Volcke E. 2013. Dynamics of $N_2O$ emission from partial nitritation-anammox in a full-scale granular sludge reactor. Proceed-ings from the 9th International Conference on Biofilm Reactors, 2013 May 28-31, Paris. 

  49. Rodriguez-Caballero A, Pijuan M. 2013. $N_2O$ and NO emissions from a partial nitrification sequencing batch reactor: exploring dynamics, sources and minimization mechanisms. Water Res. 47: 3131-3140. 

  50. Hanaki K, Hong Z, Matsuo T. 1992. Production of nitrous oxide gas during denitrification of wastewater. Water Sci. Technol. 26: 1027-1036. 

  51. Schalk-Otte S, Seviour RJ, Kuenen JG, Jetten MSM. 2000. Nitrous oxide ( $N_2O$ ) production by Alcaligenes faecalis during feast and famine regimes. Water Res. 34: 2080-2088. 

  52. Hynes RK, Knowles R. 1984. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen. Can. J. Microbiol. 30: 1397-1404. 

  53. Kim DJ, Kim H, Kim Y. 2011. Effect of nitrogen compounds and organic carbon concentrations on $N_2O$ emission during denitrification. Clean Technol. 17: 134-141. [Korean Literature] 

  54. Wang H, Guan Y, Pan M, Wu G. 2016. Aerobic $N_2O$ emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process. J. Environ. Sci. 46: 70-79. 

  55. Leix C, Drewes JE, Ye L, Koch K. 2017. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions. Bioresour. Technol. 236: 174-185. 

  56. Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. 

  57. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 14683-14688. 

  58. Tourna M, Freitag TE, Nicol GW, Prosser JI. 2008. Growth, activ- ity and temperature responses of ammonia oxidising archaea and bacteria in soil microcosms. Environ. Microbiol. 10: 1357-1364. 

  59. Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM, et al. 2008. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 10: 3140-3149. 

  60. Bru D, Sarr A, Philippot L. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73: 5971-5974. 

  61. Throback IN, Enwall K, Jarvis A, Hallin S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community sur- veys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49: 401-417. 

  62. Yu R, Kampschreur MJ, Loosdrecht MC, Chandran K. 2010. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environ. Sci. Technol. 44: 1313-1319. 

  63. Braker G, Fesefeldt A, Witzel KP. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769-3775. 

  64. Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59: 327-335. 

  65. Braker G, Tiedje JM. 2003. Nitricoxide reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. 69: 3476-3483. 

  66. Yang Y, Huang S, Zhang Y, Xu F. 2014. Nitrogen removal by Chelatococcus daeguensis TAD1 and its denitrification gene identification. Appl. Biochem. Biotechnol.172: 829-839. 

  67. Zheng M, He D, Ma T, Chen Q, Liu S, Ahmad M, et al. 2014. Reducing NO and $N_2O$ emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1, Bioresour. Technol. 162: 80-88. 

  68. Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72: 5181-5189. 

  69. Kloos K, Mergel A, Sch C, Bothe H. 2001. Denitrification within the genus Azospirillum and other associative bacteria. Funct. PlantBiol. 28: 991-998. 

  70. Castellano-Hinojosa A, Maza-Marquez P, Melero-Rubio Y, Gonzalez-Lopez J, Rodelas B. 2018. Linking nitrous oxide emissions to population dynamics of nitrifying and denitrifying prokaryotes in four full-scale wastewater treatment plants. Chemosphere 200: 57-66. 

  71. Zheng M, Tian Y, Liu T, Ma T, Li L, Li C, et al. 2015. Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: generation, spatial variation and microbial interpretation. Bioresour. Technol. 179: 510-517. 

  72. Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, et al. 2014. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297. 

  73. Erkus O, de Jager VCL, Spus M, van Alen-Boerrigter IJ, van Rijswijck IMH, Hazelwood L, et al. 2013. Multifactorial diversity sustains microbial community stability. ISME J. 7: 2126-2136. 

  74. Pauleta SR, Dell'Acqua S, Moura I. 2013. Nitrous oxide reductase. Coord. Chem. Rev. 257: 332-349. 

  75. Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ. 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367: 1157-1168. 

  76. Zumft WG, Kroneck PM. 2007. Respiratory transformation of nitrous oxide ( $N_2O$ ) to dinitrogen by Bacteria and Archaea. Adv. Microb. Physiol. 52: 107-227. 

  77. Viebrock A, Zumft WG. 1988. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J. Bacteriol. 170: 4658-4668. 

  78. Simon J, Einsle O, Kroneck PM, Zumft WG. 2004. The unprece-dented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 569: 7-12. 

  79. Figueroa-Gonzalez I, Quijano G, Laguna I, Munoz R, Garcia-Encina PA. 2016. A fundamental study on biological removal of $N_2O$ in the presence of oxygen. Chemosphere 158: 9-16. 

  80. Frutos OD, Quijano G, Perez R, Munoz R. 2016. Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chem. Eng. J. 288: 28-37. 

  81. Kartal B, Kuenen JG, van Loosdrecht MCM. 2010. Sewage treat-ment with Anammox. Science 328: 702-703. 

  82. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, et al. 2010. Nitritedriven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548. 

  83. He Z, Feng Y, Zhang S, Wang X, Wu S, Pan X. 2018. Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: Microbiology and potential applications. Sci. Total Environ. 621: 453-464. 

  84. Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MS, Keltjens JT. 2012. Bacterial oxygen production in the dark. Front. Microbiol. 3: 273. 

  85. Ehrenreich P, Behrends A, Harder J, Widdel F. 2000. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 173: 58-64. 

  86. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Sch- reiber F, et al. 2011. Alkane degradation under anoxic condi-tions by a nitratereducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ. Microbiol. Rep. 3: 125-135. 

  87. Coates JD, Chakraborty R, Lack JG, O'connor SM, Cole KA, Bender KS, et al. 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411: 1039-1043. 

  88. Chakraborty R, O'Connor SM, Chan E, Coates JD. 2005. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl. Environ. Microbiol. 71: 8649-8655. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로