$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

The use of dual-frequency measurements from the Global Navigation Satellite System (GNSS) enables us to observe precise ionospheric total electron content (TEC). Currently, many GNSS reference stations in South Korea provide both GPS and GLONASS data. In the present study, we estimated the grid-base...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • This study employed the data received in every 30 sec from nine GNSS reference stations operated by the Korea Astronomy and Space Science Institute to calculate GPS/GLONASS TEC over the Korean Peninsula. In addition, the GNSS receiver DCBs that are the largest error source in the ionospheric TEC calculation are calculated relatively by applying the least square (LSQ) method, and the characteristics of GPS and GLONASS receiver DCBs are analyzed respectively. Furthermore, the TEC values over the Korean Peninsula calculated with other data processing methods are compared and analyzed.
  • In this study, an algorithm was developed to determine the DCBs of GPS and GLONASS receivers simultaneously as presented in Eq. (4).
  • In this study, we set the elevation angle of the GNSS satellite to 20° to reduce the effect of a multi-path error.
  • The GPS and GLONASS IPP trajectory was analyzed to determine the effect of the GLONASS TEC over the Korean Peninsula. When the GPS signals are not observed in a short period of time, the GLONASS measurements can play a role in almost TEC estimation system.
  • The GPS and GLONASS observation data were employed simultaneously to monitor the change in the ionospheric TEC precisely over the Korean Peninsula. Fig.
  • The GLONASS satellites have also larger orbit inclination than that of the GPS satellite as shown in the daily IPP analysis results. Therefore, IPP distribution in the GLONASS is located farther to the north direction in the Korean Peninsula than that of the GPS, thereby analyzing the changes in the ionospheric TEC in the northern region of the Korean Peninsula more accurately.
  • This study calculated the ionospheric TEC by dividing the data utilization method into GPS only, GLONASS (‘GLO’) only, and the GPS+GLO combination, and then recalculated the grid-based ionospheric TEC as shown in Fig. 5 utilizing the inverse distance weighted interpolation technique.
  • The utilization of GLONASS along with GPS has increased steadily to analyze the TEC in the ionosphere. This study employed the data received in every 30 sec from nine GNSS reference stations operated by the Korea Astronomy and Space Science Institute to calculate GPS/GLONASS TEC over the Korean Peninsula. In addition, the GNSS receiver DCBs that are the largest error source in the ionospheric TEC calculation are calculated relatively by applying the least square (LSQ) method, and the characteristics of GPS and GLONASS receiver DCBs are analyzed respectively.
  • The DCB of the GNSS satellites is somewhat smaller than that of the receiver but it also has the value up to several ns. Thus, DCBs that are created by the GNSS satellites and receivers must be calculated and removed from the observed value to calculate the ionospheric TEC precisely.

대상 데이터

  • The GPS satellites broadcast two carrier frequencies in the L-band (L1 = 1575.42 MHz and L2 = 1227.60 MHz) to the ground. The reception of dual frequency of the GLONASS satellites at the ground can determine the positioning of users as well as calculate the ionospheric TEC value accurately in contrast with GPS signals.
  • This study analyzed the changes in the ionospheric TEC utilizing the data of GPS and GLONASS received on Nov. 1 in 2017 from the GNSS reference stations operated by the Korea Astronomy and Space Science Institute. The receiver DCB, which acted as the largest error in calculating the ionospheric TEC accurately, was determined relatively.

이론/모형

  • 5. Grid TEC maps over South Korea derived from inverse distance weighted interpolation method.
  • 2002). This study employed a method proposed by Sardon et al. (1994).
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Afraimovich, E. L., Astafyeva, E. I., Demyanov, V. V.,Edemskiy, I. K., Gavrilyuk, N. S., et al. 2013, A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena, J. Space Weather Space Clim, 3, A27. https://doi.org/10.1051/swsc/2013049 

  2. Afraimovich, E. L., Kosogorov, E. A., Lesyuta, O. S., Ushakov, I. I., & Yakovets, A. F. 2001, Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network, Ann. Geophys., 19, 723-731 

  3. Calais, E. & Minster, J. B. 1998, GPS, earthquakes, the ionosphere, and the space shuttle, Phys. Earth Planet Inter, 105, 167-181. https://doi.org/10.1016/S0031-9201(97)00089-7 

  4. Camargo, P. O. 2009, Quality of TEC Estimated with Mod Ion Using GPS and GLONASS Data, Mathematical Problems in Engineering, Article ID 794578, 1-16. https://doi.org/10.1155/2009/794578 

  5. Choi, B. K. & Lee, S. J. 2018, Te infuence of grounding on GPS receiver diferential code biases, ASR, 62, 457-463. https://doi.org/10.1016/j.asr.2018.04.033 

  6. Coco, D. S., Gaussiran, T. L., & Coker, C. 1995, Passive detection of sporadic E using GPS phase measurements, Radio Sci., 30, 1869-1874. https://doi.org/10.1029/95RS02453 

  7. Coster, A., Williams, J., Weatherwax, A., Rideout, W., & Herne, D. 2013, Accuracy of GPS total electron content: GPS receiver bias temperature dependence, Radio Sci., 48, 190-196. https://doi.org/10.1002/rds.20011 

  8. Cot, C. & Teitelbaum, H. 1980, Generation of gravity waves by inhomogeneous heating of the atmosphere, J. Atmos. Terr. Phys., 42, 877-883. https://doi.org/10.1016/0021-9169(80)90092-6 

  9. Davies, K. & Hartmann, G. K. 1997, Studying the ionosphere with the Global Positioning System, Radio Sci., 32, 1695-1703. https://doi.org/10.1029/97RS00451 

  10. Grejner-Brzezinska, D. A., Wielgosz, P., Kashani, I., Smith, D. A., Spencer, P. S. J., et al. 2004, An analysis of the efects of different network-based ionosphere estimation models on rover positioning accuracy, Journal of GPS, 3, 115-131. https://doi.org/10.5081/jgps.3.1.115 

  11. Hajj, G. A., Ibanez-Meier, R., Kursinski, E. R., & Romans, L. J. 1994, Imaging the ionosphere with the global positioning system, International Journal of Imaging Systems and Technology, 5, 174-187. https://doi.org/10.1002/ima.1850050214 

  12. Ho, C. M., Mannucci, A. J., Lindqwister, U. J., Pi, X., & Tsurutani, B. T. 1996, Global ionospheric Perturbations monitored by the worldwide GPS network, Geophys. Res. Lett., 23, 3219-3222. https://doi.org/10.1029/96GL02763 

  13. Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. 1993, Global Positioning System: Theory and Practice, 2nd ed. (New York: Springer-Verlag) 

  14. Lanyi, G. E. & Roth, T. 1988, A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observation, Radio Sci., 23, 483-492. https://doi.org/10.1029/RS023i004p00483 

  15. Mannucci, A., Iijima, B., Sparks, L., Pi, X., Wilson, B., et al. 1999, Assessment of global TEC mapping using a three- dimensional electron density model, J Atmos. Sol. Terr. Phys., 61, 1227-1236. https://doi.org/10.1016/S1364-6826(99)00053-X 

  16. Nakashima, Y. & Heki, K. 2014, Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan, Radio Sci., 49, 497-505. https://doi.org/10.1002/2014RS005413 

  17. Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., et al. 2002, A new technique for mapping of total electron content using GPS network in Japan, Earth, Planets and Space, 54, 63-70. https://doi.org/10.1186/BF03352422 

  18. Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., et al. 2013, GPS observations of medium-scale traveling ionospheric disturbances over Europe, Ann. Geophys., 31, 163-172. https://doi.org/10.5194/angeo-31-163-2013 

  19. Sardon, E., Rius, A., & Zarraoa, N. 1994, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29, 577-586. https://doi.org/10.1029/94RS00449 

  20. Wanninger, L., Sardon, E., & Warnant, R. 1994, Determination of the total ionospheric electron content with GPS- Difficulties and their solution, Proceedings of Beacon Satellite Symposium '94, ed. L. Kersley (Aberystwyth: Univ. of Aberystwyth), pp.13-16. http://hdl.handle.net/2268/84763 

  21. Warnant, R. 1997, Reliability of the TEC computed using GPS measurements - Te problem of hardware biases, Acta Geod. Geophys. Hung., 32, 451-459 

  22. Wilson, B. D. & Mannucci, A. J. 1993, Instrumental biases in ionospheric measurements derived from GPS data, in ION GPS 1993 (Institute of Navigation), September 22- 24, 1993, Salt Palace Convention Center, Salt Lake City, UT, pp.1343-1351 

  23. Yasyukevich, Y. Y., Mylnikova, A. A., & Polyakova, A. S. 2015, Estimating the total electron content absolute value from the GPS/GLONASS data, Results in Physics, 5, 32-33. https://doi.org/10.1016/j.rinp.2014.12.006 

  24. Zakharenkova, I, Astafyeva, E., & Cherniak, I. 2016, GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick's Day storm, J. Geophys. Res. Space Physics, 121, 12138-12156. https://doi.org/10.1002/2016JA023332 

  25. Zhang, W., Zhang, D. H., & Xiao, Z. 2009, The influence of geomagnetic storms on the estimation of GPS instrumental biases, Ann. Geophys., 27, 1613-1623. https://doi.org/10.5194/angeo-27-1613-2009 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로