$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

The Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) positioning has been widely used in geodesy, surveying, and navigation fields. RTK can benefit enormously from the integration of multi-GNSS. In this study, we develop a GPS/BeiDou Navigation Satellite System (BDS) RTK integrati...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The users of GNSS dual-frequency receivers may improve the position accuracy by nearly removing the error due to the ionosphere, which is the largest error in the signal transmission. However, since users of GNSS single frequency receivers do not remove the ionospheric error directly, the error is separately estimated or models and global ionosphere maps products are additionally utilized to improve the location accuracy. However, the RTK performance of single frequency users in medium and long baselines is still poor compared to that of dual-frequency users.
  • In this study, RDOP, which is an indicator that is related to user’s position precision in relative positioning, was calculated by each of the BLs.
  • In this study, we develop a relative positioning algorithm using GPS and BDS observation data and analyzes the positioning performance for the long baselines between a reference station and rovers. In addition, the data processing methods according to each baseline distance are divided into GPS-only, BDS-only, and integrated GPS+BDS and applied in order to compare the position accuracy.
  • Parameters such as location and the integer ambiguity are estimated in every 30 sec using the Extended Kalman Filter. This study also uses Global Mapping Function (GMF) and Global Pressure and Temperature (GPT) 2 models to estimate the tropospheric delay error.
  • This study employs GPS L1 (1575.42 MHz) and L2 (1227.60 MHz) signals, and BDS’s B1 (1561.098 MHz) and B2 (1207.17 MHz) signals.
  • This study selected three BLs to comparatively analyze the positioning accuracy of relative positioning with regard to 100 km or longer BLs, and performed data processing using GPS-only, BDS-only, and integrated GPS/BDS, respectively. The data processing results revealed that position errors increased in all of GPS-only, BDS-only, and integrated GPS/BDS as the BL became longer.

대상 데이터

  • For the phase center offset (PCO) and phase center variation (PCV) of the GNSS satellites and receiver’s antenna, the IGS14.atx files that contained antenna information were used.
  • The baselines consist of DAEJ-SKMA, DAEJ-KOHG, and DAEJ-JEJU, respectively. The BLs were approximately 128 km, 216 km, and 355 km from the RS. The configuration of the baselines for the long baseline relative positioning is shown in Fig.

데이터처리

  • 3 shows the position error in the navigation coordinate according to three different BLs in a time series. Data processing of GPS-only, BDS-only, and integrated GPS+BDS was performed respectively using the Multi-GNSS Analysis Software developed by the Korea Astronomy and Space Science Institute to compare and analyze the position error of relative positioning. In addition, the results calculated by high-precision GNSS software Bernese 5.
  • In addition, the RDOP, which is a reliable indicator in user’s position determination, was calculated and analyzed.

이론/모형

  • The tidal effect due to the Earth and the pole was compensated by using a model provided by the International earth rotation service (IERS) conventions 2010, and the effect of ocean tide was compensated by using the Finite Element Solution (FES) 2004 model.
본문요약 정보가 도움이 되었나요?

참고문헌 (16)

  1. Cai, C. & Gao, Y. 2013, Modeling and assessment of combined GPS/ GLONASS precise point positioning, GPS Solut., 17, 223-236. https://doi.org/10.1007/s10291-012-0273-9 

  2. Cai, C., Gao, Y., Pan, L., & Zhu, J. 2015, Precise point positioning with quad-constellations: GPS, BeidDou, GLONASS and Galileo, ASR, 56, 133-143. https://doi.org/10.1016/j.asr.2015.04.001 

  3. Chen, J., Wang, J., Zhang, Y., Yang, S., Chen, Q., et al. 2016, Modeling and Assessment of GPS/BDS Combined Precise Point Positioning, Sensors, 1151. https://doi.org/10.3390/s16071151 

  4. Elmas, Z. G., Aquino, M., Marques, H. A., & Monico, J. F. G. 2011, Higher order ionospheric effects in GNSS positioning in the European region, Ann. Geophys., 29, 1383-1399. https://doi.org/10.5194/angeo-29-1383-2011 

  5. Gao, Y., Wojciechowski, A., & Chen, K. 2005, Airborne Kinematic Positioning Using Precise Point Positioning Methodology, Geomaica, 59, 29-36 

  6. Gao, Z., Ge, M., Shen, W., Li, Y., Chen, Q., et al. 2017, Evaluation on the impact of IMU grades on BDS + GPS PPP/INS tightly coupled integration, ASR, 60, 1283-1299. https://doi.org/10.1016/j.asr.2017.06.022 

  7. Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. 2008, Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations, J. Geod., 82, 389-399. https://doi.org/10.1007/s00190-007-0187-4 

  8. Geng, J., Meng, X., Dodson, A. H., Ge, M., & Teferle, F. N. 2010, Rapid re-convergences to ambiguity-fixed solutions in precise point positioning, J. Geod., 84, 705-714. https://doi.org/10.1007/s00190-010-0404-4 

  9. Hernandez-Pajares, M., Juan, J. M., Sanz, J., & Orus, R. 2007, Second-order ionospheric term in GPS: implementation and impact on geodetic estimates, JGR, 112: B08417. https://doi.org/10.1029/2006JB004707 

  10. Kouba, J. & Heroux, P. 2001, Precise point positioning using IGS orbit and clock products, GPS Solut., 5, 12-28. https://doi.org/10.1007/PL00012883 

  11. Odijk, D. 2003, Ionospheric-Free Phase Combinations for Modernized GPS, Journal of Surveying Engineering, 129, 165-173. https://doi.org/10.1061/(ASCE)0733-9453(2003)129:4(165) 

  12. Paziewski, J. & Sieradzki, R. 2017, Integrated GPS+BDS instantaneous medium baseline RTK positioning: Signal analysis, methodology and performance assessment, ASR, 60, 2561-2573, https://doi.org/10.1016/j.asr.2017.04.016 

  13. Teunissen, P. J. G. 1995, The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation, Journal of Geodesy, 70, 65-82. https://doi.org/10.1007/BF00863419 

  14. Wielgosz, P., Kashani, I., & Grejner-Brzezinska, D. 2005, Analysis of long-range network RTK during a severe ionospheric storm, J. Geod., 79, 524-531. https://doi.org/10.1007/s00190-005-0003-y 

  15. Zhao, Q., Guo, J., Li, M., Qu, L., Hu, Z., et al. 2013, Initial results of precise orbit and clock determination for COMPASS navigation satellite system, J. Geod., 87, 475-486. https://doi.org/10.1007/s00190-013-0622-7 

  16. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. Solid Earth, 102, 5005-5017. https://doi.org/10.1029/96JB03860 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로