$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

관상동맥질환 치료를 위한 생체흡수형스텐트의 개발 동향
The Developing Trend in Bioresorbable Stent for Treatment of Coronary Artery Disease 원문보기

공업화학 = Applied chemistry for engineering, v.29 no.5, 2018년, pp.497 - 502  

정경원 (순천대학교 공과대학 고분자공학과) ,  김태훈 ((주)시지바이오) ,  나재운 (순천대학교 공과대학 고분자공학과) ,  박준규 ((주)시지바이오)

초록
AI-Helper 아이콘AI-Helper

협심증, 심근경색과 같은 관상동맥 질환은 급속도로 증가하고 있다. 관상동맥 질환은 콜레스테롤과 칼슘과 같은 플라크들이 혈관벽에 흡착되어 발생한다. 심혈관 중재시술은 풍선 카테터와 금속스텐트를 이용하여 좁아진 관상동맥혈관을 확장시키는 비수술적 시술방법이다. 금속재질의 스텐트는 관상동맥질환에 의한 사망자를 감소시키는데 효과적이었지만 영구적으로 혈관에 금속재질 스텐트가 이식되어 있기 때문에 지속적인 염증과 후기 혈전증 등이 발생되었다. 따라서, 스텐트와 같은 영구적 보철물에 의한 합병증과 재협착 등을 해결하기 위한 생체 흡수성 혈관 지지체의 개발은 급속도로 증가되고 있다. 이 리뷰에서는 생체흡수형스텐트의 성공적인 개발을 위한 동향에 대해서 논하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The coronary artery disease (CAD) is rapidly increasing such as angina pectoris and atherosclerosis. The CAD is induce by cholesterol and calcium like plaque absortion to artery wall. The percutaneouss coronary intervention is non-invasive treatment that narrowed-artery is expand by using balloon ca...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이 리뷰 논문에서는 생체흡수형스텐트의 성능 개선을 위한 기존 제품의 분석과 개선을 위해 요구되는 사항에 대하여 논의하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
금속재질의 스텐트의 장점과 단점은? 심혈관 중재시술은 풍선 카테터와 금속스텐트를 이용하여 좁아진 관상동맥혈관을 확장시키는 비수술적 시술방법이다. 금속재질의 스텐트는 관상동맥질환에 의한 사망자를 감소시키는데 효과적이었지만 영구적으로 혈관에 금속재질 스텐트가 이식되어 있기 때문에 지속적인 염증과 후기 혈전증 등이 발생되었다. 따라서, 스텐트와 같은 영구적 보철물에 의한 합병증과 재협착 등을 해결하기 위한 생체 흡수성 혈관 지지체의 개발은 급속도로 증가되고 있다.
협심증, 심근경색과 같은 관상동맥 질환은 어떻게 발생되는가? 협심증, 심근경색과 같은 관상동맥 질환은 급속도로 증가하고 있다. 관상동맥 질환은 콜레스테롤과 칼슘과 같은 플라크들이 혈관벽에 흡착되어 발생한다. 심혈관 중재시술은 풍선 카테터와 금속스텐트를 이용하여 좁아진 관상동맥혈관을 확장시키는 비수술적 시술방법이다.
심혈관 중재시술이란 무엇인가? 관상동맥 질환은 콜레스테롤과 칼슘과 같은 플라크들이 혈관벽에 흡착되어 발생한다. 심혈관 중재시술은 풍선 카테터와 금속스텐트를 이용하여 좁아진 관상동맥혈관을 확장시키는 비수술적 시술방법이다. 금속재질의 스텐트는 관상동맥질환에 의한 사망자를 감소시키는데 효과적이었지만 영구적으로 혈관에 금속재질 스텐트가 이식되어 있기 때문에 지속적인 염증과 후기 혈전증 등이 발생되었다.
질의응답 정보가 도움이 되었나요?

참고문헌 (29)

  1. C. Landau, R. A. Lange, and L. D. Hilis, Percutaneous transluminal coronary angioplasty, N. Engl. J. Med., 330, 981-993 (1994). 

  2. G. L. Buchanan, S. Basavarajaiah, and A. Chieffo, Stent thrombosis: incidence, predictors and new technologies, Thrombosis, 2012, 956-962 (2012). 

  3. B. D. Gogas, Bioresorbable scaffolds for percutaneous coronary interventions, Glob. Cardiol. Sci. Pract., 40, 409-427 (2014). 

  4. A. Abizaid, R. A. Costa, and J. Schofer, Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions, J. Am. Coll. Cardiol., 9, 565-574 (2016). 

  5. S. Verheye, J. A. Ormiston, J. Stewart, M. Webster, E. Sanidas, and R. Costa, A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation, JACC Cardiovasc. Interv., 7, 89-99 (2014). 

  6. M. Ying and Z. Chunjiao, Gloval Bioresorbable Vascular Scaffold Sales Market Report 2017, 1-129, QYResearch, CA, USA (2017). 

  7. Y. C. Lee, Health Industry Brief Medical Device Market Statistics: Stent, Korea Health Industry Development Institute, 52, 1-20 (2017). 

  8. H. Y. Ang, H. Bulluck, P. Wong, S. S. Venkatraman, Y. Huang, and N. Foin, Bioresrobable stent: Current and upcoming bioresorbable technologies, Int. J. Cardiol., 228, 931-939 (2017). 

  9. H. Hermawan, D. Dube, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater, 6, 1693-1697 (2010). 

  10. J. Iqbal, Y. Ounuma, J. Ormistion, A. Abizaid, R. Wasksman, and P. W. Serruys, Bioresorbable scaffolds: rationale, current status, challenges, and future, Eur. Heart J., 35, 765-776 (2014). 

  11. E. Tenekecioglu, P. W. Serruys, Y. Onuma, R. Costa, D. Chamie, Y. Sotomi, T. B. Yu, A. Abizaid, H. B. Liew, and T. Santoso, Randomized comparsion of Absorb bioresorbable vascular scaffold and Mirage microfiber sirolimus-eluting scaffold using multimodality imaging, JACC Cadiovasc. Interv., 10(11), 1115-1130 (2017). 

  12. M. C. Chen, Y. Chang, C. T. Liu, W. Y. Lai, S. F. Peng, Y. W. Hung, H. W. Tasi, and H. Sung, The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents, Biomaterials, 30, 79-88 (2009). 

  13. S. A. Park, S. J. Lee, K. S. Lim, I. H. Bae, J. H. Lee, W. D. Kim, M. H. Jeong, and J. K. Park, In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system, Mater. Lett., 141, 355-358 (2015). 

  14. B. Gogas, V. Farooq, Y. Onuma, and P. W. Serruys, The ABSORB bioresorbable vascular scaffold an evolution or reverlution in interventional cardiology, Hellenic J. Cardiol., 53, 301-309 (2012). 

  15. P. W. Serruys, Y. Onuma, H. M. Garcia, T. Muramatsu, R. J. vanGeuns, B. de Bruyne, D. Dudek, L. Thuesen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, R. Rapoza, and J. A. Ormiston, Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months, Eurointervention, 9(11), 1271-1284 (2014). 

  16. P. Staehr, ABSORB bioresorbable vascular scaffold system. The 4th revolution in interventional cardiology, 17th Asian Harmonization Working Party Annual Conference, November 2-6, Taipei, Taiwan (2012). 

  17. D. Regazzoli, P. Leone, A. Colombo, and A. Latib, New generation bioresorbable scaffold technologies: An update on novel devices and clinical results, J. Thorac. Dis., 9, 979-985 (2017). 

  18. S. McMahon, N. Bertolo, E. D. O'Cearbhaill, J. Salber, L. Pierucci, P. Duffy, T. Durig, V. Bi, and W. Wang, Bio-resorbable polymer stents: a review of material progress and prospects, Prog. Polym. Sci., 83, 79-96 (2018). 

  19. A. Abizaid, D. Carrie, N. Frey, M. Lutz, J. Weber-Albers, and D. Dudek, 6-Month clinical and angiographic outcomes of a novel radio radiopaque sirolimus-eluting bioresorbable vascualr scaffold: the FANTOM II study, JACC Cadiovac. Interv., 10, 1832-1838 (2017). 

  20. W. Schmidt, P. Behrens, C. Brandt-Wunderlich, S. Siewert, N. Grabow, and K. P. Schmitz, In vitro performance investigation of bioresorbable scaffolds-Standard test for vascular stents and beyond, Cardiovasc. Revasc. Med., 17, 375-383 (2016). 

  21. C. Campos, Y. Zhanh, C. Boutantas, T. Muramatsu, H. Garcia, P. Lemos, Y. Onuma, and P. W. Serruys, Bioresorbable vascular scaffolds in the clinical setting. J. Interv. Cardiol., 5, 639-646 (2013). 

  22. A. Abizaid, First report on the pivotal DESolve Nx trial: 6-month clinical and multi-modality imaging results, presented in EuroPCR 2013, May 21, Paris, France (2013). 

  23. B. D. Gogas, Bioresorbable scaffolds for percutaneous coronary interventions, Glob. Cardiol. Sci. Pract., 40, 409-427 (2014). 

  24. T. P. Vahl, P. Gasior, C. A. Gongora, K. Ramzipoor, C. Lee, and Y. Cheong, Four-year polymer biocompatiblity and vascular scaffold: An OCT study in healthy procine coronary arteries, Eurointervention, 12, 1510-1518 (2016). 

  25. A. S. Rao, M. S. Makaroun, L. K. Marone, J. S. Cho, R. Rhee, and R. A. Chaer, Long-term otucomes of internal carotid artery dissection, Stroke, 40, 499-504 (2009). 

  26. A. Seth, Y. Onuma, R. Costa, P. Chandra, V. K. Bahl, and C. N. Manjunath, First-in-human evaluation of a novel poly(L-lactide) based sirolimus-eluting bioresrobable vascular scaffold for the treatment of de novo native coronary artery lesions: meRes-1 trial. Eurointervention, 13, 415-423 (2017). 

  27. Y. Wu, L. Shen, Q. Wang, L. Ge, J. Xie, and X. Hu, Comparison of acute recoil between bioabsorbable poly(L-lactic acid) XINSORB stent and metallic stent in porcine model, J. Biomed. Biotechnol., 2012, 1-8 (2012). 

  28. Y. Zhang, C. V. Bourantas, V. Farooq, T. Muramastsu, R. Diletti, Y. Onuma, H. M. Garcia, and P. W. Serruys, Bioresorbable scaffolds in the treatment of coronary artery disease, Med. Devices (Auckl.), 6, 37-48 (2013). 

  29. C. Rapetto and M. Leoncini, Margmaris: A new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and futrue perspectives, J. Thorac. Dis., 9, S903-S913 (2017). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로