$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 작황 모니터링을 위한 무인항공기 적용방안
Application Method of Unmanned Aerial Vehicle for Crop Monitoring in Korea 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.34 no.5, 2018년, pp.829 - 846  

나상일 (농촌진흥청 국립농업과학원) ,  박찬원 (농촌진흥청 국립농업과학원) ,  소규호 (농촌진흥청 국립농업과학원) ,  안호용 (농촌진흥청 국립농업과학원) ,  이경도 (농촌진흥청 국립농업과학원)

초록
AI-Helper 아이콘AI-Helper

작황 모니터링은 농민들에게 최적의 작물 생산을 위한 농작업 관리 전략을 수립하는데 유용한 정보를 제공할 수 있다. 그러나 시료 채취에 의한 분석 등에 한정된 기존의 현장 모니터링 방법은 많은 시간과 노동력이 필요하다. 무인항공기는 고해상도 이미지를 신속하고 정기적으로 취득할 수 있는 장점이 있기 때문에 재배 면적, 생육인자, 생육이상 및 생산량 추정 등과 같은 작황 모니터링 분야에 효과적으로 활용될 수 있다. 또한, 위성과 비교하여 비행 고도가 낮아 흐린 날씨에서도 높은 화질의 영상을 수집할 수 있다. 본 연구는 작황 모니터링 분야에서의 무인항공기 활용 가능성을 검토하고 무인항공기 기반의 작황 정보 생산을 위한 적용방안을 제시하고자 하였다.

Abstract AI-Helper 아이콘AI-Helper

Crop monitoring can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. But, traditional monitoring has used field measurements involving destructive sampling and laboratory analysis, which is costly and time consuming. Unmann...

주제어

표/그림 (18)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한, 농업분야에서의 무인항공기 적용은 작황 모니터링을 위한 관측 목적과 파종, 시비, 방제 등 실제 농작업을 취하는 임무 목적으로 나누어져 있어, 각각의 목적에 맞게 무인항공기를 적용하기 위해서는 많은 검토가 필요하다. 따라서 본 논문에서는 농촌진흥청 국립농업 과학원에서 구축한 작황 정보 사례를 바탕으로 무인 항공기 적용을 위한 국내 작황 모니터링 유형별 검토 사항 및 구체적인 접근 방법을 제시하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
작황 모니터링의 장점은 무엇인가? 작황 모니터링은 농민들에게 최적의 작물 생산을 위한 농작업 관리 전략을 수립하는데 유용한 정보를 제공할 수 있다. 그러나 시료 채취에 의한 분석 등에 한정된 기존의 현장 모니터링 방법은 많은 시간과 노동력이 필요하다.
토지이용도 및 토지 피복도를 작성하기위해 작물 분류 기법중 자동으로 클래스를 지정하는 방법의 장단점은 무엇인가? 여기서 작물분류는 기존의 위성영상을 기반으로 토지이용도 및 토지피복도 (Land Use & Land Cover; LULC)를 작성하기 위하여 고안된 분류기법을 농경지에 적용하여 촬영 범위 내 모든 작물에게 자동으로 클래스를 지정하는 방법이다. 이 방법은 다양한 작물에 대한 재배면적을 짧은 시간에 파악할 수 있다는 장점이 있지만 사전에 분류 항목을 설정하기 위하여 대상지역 내 재배되는 모든 작물에 대한 사전 정보가 필요하다는 한계가 있다. 또한, 무인항공기 촬영 영상은 1 m 이내의 고해상도 영상으로 필지 내 토양과 멀칭을 위한 비닐 등의 피복상태가 잡음으로 반영 되어 위성영상과 비교하여 정확도가 감소하는 단점이 있다. 반면에 작물추출은 기존의 촬영된 영상을 기반으로 작성된 작물별 판독 라이브러리를 참고하여 육안판 독에 의한 디지타이징(digitizing) 방법 또는 작물 생육단 계별 식생지수 최고치(peak)가 나타나는 시기의 차이를 이용한 시계열 분석 방법 등을 이용하여 특정 작물의 재배 필지만을 추출하는 방법이다.
무인항공기의 의미는 무엇인가? 무인항공기(Unmanned Aerial Vehicle; UAV)는 사람이 탑승하지 않고 지상에서 원격조종(Remote control) 을 이용한 반자동(Semi-auto-piloted) 형식으로 운영하거나 사전 프로그램 된 경로에 따라 자동(Autopiloted)으로 운영되는 비행체를 의미하며, 넓은 범위에서는 비행체 뿐만 아니라 이를 제어하는 지상통제장비(Ground Control System; GCS)와 통신장비, 지원장비 등의 전체 시스템까지도 포함하고 있다. 일반적으로 드론(Drone) 으로도 표현되고 있지만 드론의 어원이 ‘벌이 윙윙 거린다’라는 뜻의 영어단어에서 파생된 것으로 볼 때, 드론은 단순히 회전익 기체만을 의미하는 것으로 회전익 기체와 고정익 기체를 통칭할 경우에는 무인항공기 또는 UAV로 표기하는 것이 정확한 표현이라 할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (54)

  1. Ahn, K.H., Y.H. Park, H.R. En, H.K. Lee, K.H. Lee, I.K. Hwang, and J.Y. Choi, 2014. Atmospheric aerosol measurement using UAV, Proc. of the 57th Meeting of Korean Society for Atmospheric Environment, Pyeongchang, Oct. 30-31, pp. 149. 

  2. Antonarakis, A., K.S. Richards, and J. Brasington, 2008. Object-based land cover classification using airborne LiDAR, Remote Sensing of Environment, 112(6): 2988-2998. 

  3. Broge, N.H. and E. Leblanc, 2000. Comparing predictive power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sensing of Environment, 76(2): 156-172. 

  4. Dash, J. and P.J. Curran, 2004. The MERIS terrestrial chlorophyll index, International Journal of Remote Sensing, 25(23): 5403-5413. 

  5. Daughtry, C.S.T., C.L. Walthall, M.S. Kim, E. Brown de Colstoun, and J.E. McMurtrey, 2000. Estimating corn leaf chlorophyll concentration for leaf and canopy reflectance, Remote Sensing of Environment, 74(2): 229-239. 

  6. Eitel, J.U.H., D.S. Long, P.E. Gessler, and A.M.S. Smith, 2007. Using in situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status, International Journal of Remote Sensing, 28(18): 4183-4190. 

  7. Eitel, J.U.H., D.S. Long, P.E. Gessler, and E.R. Hunt, 2008. Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat, Agronomy Journal, 100(6): 1694-1702. 

  8. Franklin S. and M. Wulder, 2002. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas, Progress in Physical Geography, 26(2): 173-205. 

  9. Gitelson, A.A. and M.N. Merzlyak, 1994. Quantitative estimation of chlorophyll using reflectance spectra: experiments with autumn chestnut and maple leaves, Journal of Photochemistry and Photobiology B: Biology, 22(3): 247-252. 

  10. Gitelson, A.A., Y.J. Kaufman, and M.N. Merzlyak, 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS, Remote Sensing of Environment, 58(3): 289-298. 

  11. Gitelson, A.A., Y.J. Kaufman, R. Stark, and D. Rundquist, 2002. Novel algorithms for remote estimation of vegetation fraction, Remote Sensing of Environment, 80(1): 76-87. 

  12. Gitelson, A.A., Y. Gritz, and M.N. Merzlyak, 2003. Relationships between leaf chlorophyll content and spectral reflectance algorithms for non-destructive chlorophyll assessment in higher plants, Journal of Plant Physiology, 160(3): 271-282. 

  13. Haboudane, D., J.R. Miller, N. Tremblay, P.J. Zarco-Tejada, and L. Dextraze, 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture, Remote Sensing of Environment, 81(2-3): 416-426. 

  14. Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I.B. Strachan, 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture, Remote Sensing of Environment, 90(3): 337-352. 

  15. Haboudane, D., N. Tremblay, J.R. Miller, and P. Vigneault, 2008. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 46(2): 423-437. 

  16. Hong, S.Y., Y.H. Kim, E.Y. Choe, Y.S. Zhang, Y.K. Sonn, C.W. Park, K.H. Jung, B.K. Hyun, S.K. Ha, and K.C. Song, 2010. Geographic information system and remote sensing in soil science, Korean Journal of Soil Science and Fertilizer, 43(5): 684-695 (in Korean with English abstract). 

  17. Hong, S.Y., J.T. Lee, S.K. Rim, W.K. Jung, and I.S. Jo, 1998. Estimation of paddy rice growth increment by using spectral reflectance signature, Korean Journal of Remote Sensing, 14(1): 83-94 (in Korean with English abstract). 

  18. Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, 25(3): 295-309. 

  19. Huete, A., C. Justice, and W. Leeuwen, 1999. MODIS vegetation index (MOD13) algorithm theoretical basis document version 3, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. 

  20. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83(1-2): 195-213. 

  21. Hunt, E.R., C.S.T. Daughtry, J.U.H. Eitel, and D.S. Long, 2011. Remote sensing leaf chlorophyll content using a visible band index, Agronomy Journal, 103(4): 1090-1099. 

  22. Hunt, E.R., P.C. Doraiswamy, J.E. McMurtrey, C.S.T. Daughtry, E.M. Perry, and B. Akhmedov, 2012. A visible band index for remote sensing leaf chlorophyll content at the canopy scale, International Journal of Applied Earth Observation and Geoinformation, 21: 103-112. 

  23. Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I.B. Strachan, 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture, Remote Sensing of Environment, 90(3): 337-352. 

  24. Jeong, A.C. and K.S. Jung, 2014. Research trend of UAV for flood monitoring, Proc. of 2014 Korean Society of Civil Engineers, Daegu, Oct. 22-24, pp. 907-908. 

  25. Jeong, J.H., K.A. Choi, and I.P. Lee, 2014. Application plans through case analysis of maritime surveillance systems using UAVs, Proc. of 2014 Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Seoul, Apr. 24-25, pp. 205-209 (in Korean with English abstract). 

  26. Jordan, C.F., 1969. Derivation of leaf area index from quality of light on the forest floor, Ecology, 50(4): 663-666. 

  27. Kim, D.I., Y.S. Song, G.H. Kim, and C.W. Kim, 2014. A Study on the application of UAV for Korean land monitoring, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(1): 29-38 (in Korean with English abstract). 

  28. Kim, S.Y., J.H. Yu, S.M. Koh, G.S. Park, and J.H. Shin, 2016. Extraction of the mine information using Unmanned Aerial Vehicle, Proc. of the Annual Joint Conference of the Petrological Society of Korea and the Mineralogical Society of Korea, Busan, May 26-27. pp. 120. 

  29. Kim, Y.S., K.D. Lee, S.I. Na, S.Y. Hong, N.W. Park, and H.Y. Yoo, 2016. MODIS data-based crop classification using selective hierarchical classification, Korean Journal of Remote Sensing, 32(3): 235-244 (in Korean with English abstract). 

  30. Lee, G.S., Y.W. Choi, M.H. Lee, S.G. Kim, and G.S. Choi, 2016. Reconnaissance surveying for cultural assets using Unmanned Aerial Vehicle, Journal of the Korean Cadastre Information Association, 18(3): 25-34 (in Korean with English abstract). 

  31. Lee, I.S., M.K. Lee, J.H. Kang, and J.O. Lee, 2013. Application of ultra-light UAV in cadastre, Proc. of 2013 Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Busan, Apr. 25-26, pp. 181-183 (in Korean with English abstract). 

  32. Lee, K.D., C.W. Park, K.H. So, and S.I. Na, 2017. Selection of optimal vegetation indices and regression model for estimation of rice growth using UAV aerial images, Korean Journal of Soil Science and Fertilizer, 50(5): 409-421 (in Korean with English abstract). 

  33. Louhaichi, M., M.N. Borman, and D.E. Johnson, 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat, Geocarto International, 16(1): 65-70. 

  34. Na, S.I., J.H. Park, and J.K. Park, 2012. Development of Korean Paddy Rice Yield Prediction Model (KRPM) using meteorological element and MODIS NDVI, Journal of the Korean Society of Agricultural Engineers, 54(3): 141-148 (in Korean with English abstract). 

  35. Na, S.I., S.Y. Hong, Y.H. Kim, and K.D. Lee, 2014. Estimation of corn and soybean yields based on MODIS data and CASA model in Iowa and Illinois, USA, Korean Journal of Soil Science and Fertilizer, 47(2): 92-99 (in Korean with English abstract). 

  36. Na, S.I., C.W. Park, and K.D. Lee, 2016a. Application of highland kimchi cabbage status map for growth monitoring based on unmanned aerial vehicle, Korean Journal of Soil Science and Fertilizer, 49(5): 469-479 (in Korean with English abstract). 

  37. Na, S.I., C.W. Park, Y.J. Kim, and K.D. Lee, 2016b. Mapping the spatial distribution of IRG growth based on UAV, Korean Journal of Soil Science and Fertilizer, 49(5): 495-502 (in Korean with English abstract). 

  38. Na, S.I., C.W. Park, Y.K. Cheong, C.S. Kang, I.B. Choi, and K.D. Lee, 2016c. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing - An application of unmanned aerial vehicle and field investigation data, Korean Journal of Remote Sensing, 32(5): 483-497 (in Korean with English abstract). 

  39. Na, S.I., S.Y. Hong, C.W. Park, K.D. Kim, and K.D. Lee, 2016d. Estimation of highland kimchi cabbage growth using UAV NDVI and agro-meteorological factors, Korean Journal of Soil Science and Fertilizer, 49(5): 420-428 (in Korean with English abstract). 

  40. Na, S.I., B.K. Min, C.W. Park, K.H. So, J.M. Park, and K.D. Lee, 2017a. Development of field scale model for estimating garlic growth based on UAV NDVI and meteorological factors, Korean Journal of Soil Science and Fertilizer, 50(5): 422-433 (in Korean with English abstract). 

  41. Na, S.I., C.W. Park, K.H. So, J.M. Park, and K.D. Lee, 2017b. Monitoring onion growth using UAV NDVI and meteorological factors, Korean Journal of Soil Science and Fertilizer, 50(4): 306-317 (in Korean with English abstract). 

  42. Na, S.I., C.W. Park, K.H. So, J.M. Park, and K.D. Lee, 2017c. Satellite imagery based winter crop classification mapping using hierarchical classification, Korean Journal of Remote Sensing, 33(5-2): 677-687 (in Korean with English abstract). 

  43. Na, S.I., Y.J. Kim, C.W. Park, K.H. So, J.M. Park, and K.D. Lee, 2017d. Evaluation of feed value of IRG in middle region using UAV, Korean Journal of Soil Science and Fertilizer, 50(5): 391-400 (in Korean with English abstract). 

  44. Park, J.H. and S.I. Na, 2005. Estimating the vegetation indices for field crops using a spectral reflectance technique, Journal of Agriculture Science Chungbuk National University, 22(1): 101-105 (in Korean with English abstract). 

  45. Park, J.K., A. Das, and J.H. Park, 2015. Application trend of unmanned aerial vehicle (UAV) image in agricultural sector: Review and proposal, Korean Journal of Agricultural Science, 42(3): 269-276 (in Korean with English abstract). 

  46. Park, M.H., S.G. Kim, and S.Y. Choi, 2013. The Study about building method of geospatial informations at construction sites by Unmanned Aircraft System (UAS), Journal of the Korean Cadastre Information Association, 15(1): 145-156 (in Korean with English abstract). 

  47. Pearson, R.L. and L.D. Miller, 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Proc. of the Eighth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, Oct. 2-6, pp. 1357-1381. 

  48. Qi, J., A. Chehbouni, A.R. Huete, Y.H. Kerr, and S. Sorooshian, 1994. A modified soil adjusted vegetation index, Remote Sensing Environment, 48(2): 119-126. 

  49. Rondeaux, G., M. Steven, and F. Baret, 1996. Optimization of soil-adjusted vegetation indices, Remote Sensing of Environment, 55(2): 95-107. 

  50. Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering, 1974. Monitoring vegetation systems in the great plains with ERTS, Proc. of Third Earth Resources Technology Satellite-1 Symposium, Washington, D.C., pp. 309-317. 

  51. Simonneaux, V., B. Duchemin, D. Helson, S. Er-Raki, A. Olioso, and A. Chehbouni, 2008. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central morocco, International Journal of Remote Sensing, 29(1): 95-116. 

  52. Terry, N., L.J. Waldron, and S.E. Taylor, 1983. The growth and functioning of leaves I, Leaf growth and the development of function, Cambridge University Press, Cambridge, UK. 

  53. Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8(2): 127-150. 

  54. Vincini, M., E. Frazzi, and P. D'Alessio, 2008. A broad-band leaf chlorophyll index at the canopy scale, Precision Agriculture, 9(5): 303-319. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로