$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Complete Genome of Bacillus subtilis subsp. subtilis KCTC 3135T and Variation in Cell Wall Genes of B. subtilis Strains 원문보기

Journal of microbiology and biotechnology, v.28 no.10, 2018년, pp.1760 - 1768  

Ahn, Seonjoo (Department of Biomedical Sciences, Seoul National University College of Medicine) ,  Jun, Sangmi (Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology) ,  Ro, Hyun-Joo (Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology) ,  Kim, Ju Han (Department of Biomedical Sciences, Seoul National University College of Medicine) ,  Kim, Seil (Division of Chemical and Medical Metrology, Center for Bioanalysis, Korea Research Institute of Standards and Science)

Abstract AI-Helper 아이콘AI-Helper

The type strain Bacillus subtilis subsp. subtilis KCTC $3135^T$ was deeply sequenced and annotated, replacing a previous draft genome in this study. The tar and tag genes were involved in synthesizing wall teichoic acids (WTAs), and these genes and their products were previously regarded ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • subtilis subsp. subtilis strains were selected. Five complete and nine incomplete genomes of B.

이론/모형

  • Among the retrieved genes, tarABD genes and/or the conserved genes were sequentially concatenated and used for a multi-locus sequence analysis (MLSA) [32]. The alignment was carried out using MUSCLE [33] and Neighborjoining (NJ) tree was constructed using the Maximum Composite Likelihood method [34]. The Tar proteins from B.
  • Among the 60 genomes, 25 unique genomes were selected t˚Construct concise phylogenetic trees and a heatmap. The phylogenetic trees were constructed using the neighbor-joining (NJ) algorithm [35] with MEGA 7 [36]. The distance matrix was generated based on the whole genome similarity by OrthoANI [37] (Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (56)

  1. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. 

  2. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446. 

  3. Porwal S, Lal S, Cheema S, Kalia VC. 2009. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4: e4438. 

  4. Harwood CR. 1992. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol. 10: 247-256. 

  5. Earl AM, Losick R, Kolter R. 2008. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16: 269-275. 

  6. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. 

  7. Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J. 2016. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr. Polym. 140: 424-432. 

  8. Deshmukh AN, Nipanikar-Gokhale P, Jain R. 2016. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Appl. Biochem. Biotechnol. 179: 321-331. 

  9. Nakamura LK, Roberts MS, Cohan FM. 1999. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int. J. Syst. Bacteriol. 49: 1211-1215. 

  10. Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD. 2009. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int. J. Syst. Evol. Microbiol. 59: 2429-2436. 

  11. Swoboda JG, Campbell J, Meredith TC, Walker S. 2010. Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem. 11: 35-45. 

  12. Brown S, Santa Maria JP Jr, Walker S. 2013. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67: 313-336. 

  13. Lazarevic V, Abellan FX, Moller SB, Karamata D, Mauel C. 2002. Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Microbiology 148: 815-824. 

  14. Mauel C, Young M, Karamata D. 1991. Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J. Gen. Microbiol. 137: 929-941. 

  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. 

  16. Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29: 2933-2935. 

  17. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. 2015. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43: D130-D137. 

  18. Edgar RC. 2007. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8: 18. 

  19. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. 2007. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8: 209. 

  20. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. 

  21. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42: D199-D205. 

  22. Chen C, Huang H, Wu CH. 2017. Protein bioinformatics databases and resources. Methods Mol. Biol. 1558: 3-39. 

  23. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, et al. 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42: D231-D239. 

  24. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33: 5691-5702. 

  25. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41: e121-e121. 

  26. Gibson MK, Forsberg KJ, Dantas G. 2015. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9: 207-216. 

  27. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. 2016. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44: D471-480. 

  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. 

  29. Zhu Q, Kosoy M, Dittmar K. 2014. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genomics 15: 717. 

  30. Jolley KA, Maiden MC. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595. 

  31. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. 

  32. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95: 3140-3145. 

  33. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. 

  34. Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035. 

  35. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 

  36. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. 

  37. Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. 

  38. Kim S, Gong G, Woo HM, Kim Y, Um Y. 2016. Burkholderia jirisanensis sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 66: 1260-1267. 

  39. Yun SH, Lee SY, Choi CW, Lee H, Ro HJ, Jun S, et al. 2017. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J. Microbiol. 55: 56-62. 

  40. Garcia-Vallve S, Romeu A, Palau J. 2000. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 10: 1719-1725. 

  41. Zuniga M, Comas I, Linaje R, Monedero V, Yebra MJ, Esteban CD, et al. 2005. Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol. Biol. Evol. 22: 1673-1685. 

  42. Comas I, Gonzalez-Candelas F, Zuniga M. 2008. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate: phosphotransferase system through phylogenetic analyses and genome context. BMC Evol. Biol. 8: 147. 

  43. Young M, Mauel C, Margot P, Karamata D. 1989. Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyglycerol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Mol. Microbiol. 3: 1805-1812. 

  44. Yi H, Chun J, Cha CJ. 2014. Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Syst. Appl. Microbiol. 37: 95-99. 

  45. Halling SM, Burtis K, Doi R. 1977. Reconstitution studies show that rifampicin resistance is determined by the largest polypeptide of Bacillus subtilis RNA polymerase. J. Biol. Chem. 252: 9024-9031. 

  46. Goldstein BP. 2014. Resistance to rifampicin: a review. J. Antibiot. 67: 625. 

  47. Sigle S, Steblau N, Wohlleben W, Muth G. 2016. Polydiglycosylphosphate transferase PdtA (SCO2578) of Streptomyces coelicolor A3 (2) is crucial for proper sporulation and apical tip extension under stress conditions. Appl. Environ. Microbiol. 82: 5661-5672. 

  48. Sharma D, Cukras AR, Rogers EJ, Southworth DR, Green R. 2007. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J. Mol. Biol. 374: 1065-1076. 

  49. Nguyen-Disteche M, Leyh-Bouille M, Ghuysen J-M. 1982. Isolation of the membrane-bound 26 000-Mr penicillin-binding protein of Streptomyces strain K15 in the form of a penicillin-sensitive D-alanyl-D-alanine-cleaving transpeptidase. Biochem. J. 207: 109-115. 

  50. Gordon E, Mouz N, Duee E, Dideberg O. 2000. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J. Mol. Biol. 299: 477-485. 

  51. Lowy FD. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111: 1265-1273. 

  52. Drawz SM, Bonomo RA. 2010. Three decades of $\beta$ -lactamase inhibitors. Clin. Microbiol. Rev. 23: 160-201. 

  53. Farha MA, Leung A, Sewell EW, D'Elia MA, Allison SE, Ejim L, et al. 2012. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to $\beta$ -lactams. ACS Chem. Biol. 8: 226-233. 

  54. Roberts MC. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245: 195-203. 

  55. Bhavsar AP, Beveridge TJ, Brown ED. 2001. Precise deletion of tagD and controlled depletion of its product, glycerol 3-phosphate cytidylyltransferase, leads to irregular morphology and lysis of Bacillus subtilis grown at physiological temperature. J. Bacteriol. 183: 6688-6693. 

  56. D'Elia MA, Millar KE, Beveridge TJ, Brown ED. 2006. Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J. Bacteriol. 188: 8313-8316. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로