$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Semiempirical model for wet scrubbing of bubble rising in liquid pool of sodium-cooled fast reactor 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.50 no.6, 2018년, pp.849 - 853  

Pradeep, Arjun (Indira Gandhi Centre for Atomic Research, HBNI) ,  Sharma, Anil Kumar (Indira Gandhi Centre for Atomic Research, HBNI)

Abstract AI-Helper 아이콘AI-Helper

Mechanistic calculations for wet scrubbing of aerosol/vapor from gas bubble rising in liquid pool are essential to safety of sodium-cooled fast reactor. Hence, scrubbing of volatile fission product from mixed gas bubble rising in sodium pool is presented in this study. To understand this phenomenon,...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Based on the model that evaluated bubble dynamics of xenon bubble rising in sodium pool at 800 K, the scrubbing efficiency of liquid pool for NaI aerosols contained in xenon bubble has been evaluated. Fig.
  • The iodine bubble experiment [1] studied the scrubbing efficiency of sodium pool for nitro-gen-iodin mixture gas bubble rising in sodium pool. The conditions considered for the experiment were pool temperatures of 533 Ke811 K, pool depths of 1.8 and 3 m, initial iodine concentrations of 10, 50, and 100%, and initial bubble volume of 39 ml. The validation of aerosol scrubbing submodule of wet scrubbing model has been carried out using experimental results at high pool temperatures.
  • The model comprises of modules for evaluation of bubble dynamics and mass transport of aerosol/vapor. The model considers aerosol (NaI) capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The model simulates the scrubbing of volatile vapors (Cs, I) based on molecular diffusion in spherical geometry starting with uniform concentration inside and zero boundary condition.
  • The model considers aerosol (NaI) capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The model simulates the scrubbing of volatile vapors (Cs, I) based on molecular diffusion in spherical geometry starting with uniform concentration inside and zero boundary condition. The present model has been validated for the aerosol and vapor submodules based on experimental and theoretical results available in literature.
  • The present model evaluates the deposition coefficients of aerosol scrubbing for ellipsoidal bubble shape and analytically solves the Fick's diffusion equation to obtain the vapor scrubbing efficiency valid for all the bubble rise times typical to SFR pool. The study also provides details of parametric studies performed to determine the effect of various key parameters on pool scrubbing.
본문요약 정보가 도움이 되었나요?

참고문헌 (14)

  1. W.P. Kunkel, Fission-product Retention in Sodium: a Summary of Analytical and Experimental Studies at Atomics International, NAA-SR-11766, Atomics International, Canoga Park, Calif, 1966. 

  2. Quarterly Technical Progress Report, Nuclear Safety, Characterization of Sodium Fires and Fast Reactor Fission Products, AI-ERDA-13172, Atomics International, January-March 1976. 

  3. S. Miyahara, N. Sagawa, K. Shimoyama, Iodine mass transfer from xenoniodine mixed gas bubble to liquid sodium pool, (I) experiment, J. Nucl. Sci. Technol. 33 (1996) 128-133. 

  4. S. Miyahara, N. Sagawa, K. Shimoyama, Experimental and Analytical Studies of Iodine Mass Transfer from Xenon-Iodine Mixed Gas Bubble to Liquid Sodium Pool, Technical Committee Meeting on Evaluation of Radioactive Materials Release and Sodium Fires in Fast Reactor, IWGFR/92, O-arai, Japan, 1996. 

  5. S. Miyahara, N. Sagawa, Iodine mass transfer from xenon-iodine mixed gas bubble to liquid sodium pool, (II) Development of analytical model, J. Nucl. Sci. Technol. 33 (1996) 220-228. 

  6. M. Umbel, Containment Source Terms for Sodium-Cooled Fast Reactor Accidents, Master of Science Thesis, The Ohio State University, 2011, https://etd.ohiolink.edu/!etd.send_file?accessionosu1306506275&dispositioninline. 

  7. M. Bucknor, M. Farmer, D. Grabaskas, An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor, Argonne National Laboratory (ANL), 2017. 

  8. V.G. Levich, Physiochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, New Jersey, 1962. 

  9. S.H. Park, C. Park, J. Lee, B. Lee, A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool, Nucl. Eng. Technol. 49 (2017) 692-699. 

  10. D.A. Powers, J.L. Sprung, A Simplified Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting with Concrete, NUREG/CR-5901, 1992. 

  11. S. Miyahara, K. Shimoyama, Transport phenomena of iodine and noble gas mixed bubbles through liquid sodium, in: Liquid Metal Systems, 1995, pp. 27-33. 

  12. J.R. Welty, C.E. Wicks, G. Rorrer, R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, John Wiley and Sons, 2009. 

  13. J.K. Fink, L. Leibwitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, ANL/RE-95/2IL, Argonne National Lab., United States, 1995. 

  14. J. Kestin, S.T. Ro, W.A. Wakeham, Viscosity of the noble gas in the temperature range 25 - 700 $^{\circ}C$ , J. Chem. Phys. 56 (1972) 4119-4124. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로