$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

차세대 뉴로모픽 하드웨어 기술 동향
Next-Generation Neuromorphic Hardware Technology 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.33 no.6, 2018년, pp.58 - 68  

문승언 (ICT 소재연구그룹) ,  임종필 (ICT 소재연구그룹) ,  김정훈 (ICT 소재연구그룹) ,  이재우 (ICT 소재연구그룹) ,  이미영 (프로세서연구그룹) ,  이주현 (프로세서연구그룹) ,  강승열 (유연소자연구그룹) ,  황치선 (실감디스플레이연구그룹) ,  윤성민 (경희대학교 정보전자신소재공학과) ,  김대환 (국민대학교 전자공학부) ,  민경식 (국민대학교 전자공학부) ,  박배호 (건국대학교 물리학과)

Abstract AI-Helper 아이콘AI-Helper

A neuromorphic hardware that mimics biological perceptions and has a path toward human-level artificial intelligence (AI) was developed. In contrast with software-based AI using a conventional Von Neumann computer architecture, neuromorphic hardware-based AI has a power-efficient operation with simu...

표/그림 (5)

참고문헌 (53)

  1. I.K. Schuller et al., "Neuromorphic Computing: From Materials to Systems Architecture," Report of a Roundtable Convened to Consider Neuromorphic Computing Basic Research Needs, 2015, pp. 1-37. 

  2. G. Indiveri et al., "Neuromorphic silicon neuron circuits," Frontiers Neurosci,. vol. 5, May 2011, pp. 1-23. 

  3. C. Mead, "Neuromorphic Electronic Systems," Proc. IEEE, vol. 78, no. 10, Oct. 1990, pp. 1629-1636. 

  4. J. Park et al., "Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems," IEEE Trans. Neural Netw. Learning Syst., vol. 28, no. 10, Oct. 2017, pp. 2408-2422. 

  5. L. Lapicque, "Recherches Quantitatives sur L'excitation E´lectrique des Nerfs Traite'e Comme une Polarization," J. Physiol. Pathol. Gen., vol. 9, 1907, pp. 620-635. 

  6. M.D. Pickett et al., "A Scalable Neuristor Built with Mott Memristors," Nat. Mater., vol. 12, Dec. 2013, pp. 144-147. 

  7. J. Lin et al., "Low-Voltage Artificial Neuron Using Feedback Engineered Insulator-to-Metal-Transition Devices," in Int. Electon. Dev. Meeting, San Francisco, CA, USA, Dec. 3-7, 2016, p. 34.5.1-34.5.4. 

  8. P. Stoliar et al., "A Leaky-Interate-and-Fire Neuron Analog Realized with a Mott Insulator," Adv. Funct. Mater., vol. 27, no. 11, Mar. 2017, pp. 1-7. 

  9. T. Tuma et al., "Strochastic Phase-Change Neurons," Nat. Nanotech., vol. 11, 2016, pp. 693-670. 

  10. X. Zhang et al., "An Artificial Neuron Based on a Threshold Switching Memristor," IEEE Electron Dev. Lett., vol. 39, no. 2, Feb. 2018, pp. 308-311. 

  11. A. Jaiswal et al., "Proposal for a Leaky-Integrate-Fire Spiking Neuron Based on Magnetoelectric Switching of Ferromagnets," IEEE Trans. Electr. Dev., vol. 64, no. 4, Apr. 2017, pp. 1818-1824. 

  12. Z. Wang et al., "Fully Memristive Neural Networks for Pattern Classification with Unsupervised Learning," Nat. Electron., vol. 11, 2018, pp. 137-145. 

  13. T. Ohno et al., "Short-Term Plasticity And Long-Term Potentiation Mimicked In Single Inorganic Synapses," Nature Mat., vol. 10, 2011, pp. 591-595. 

  14. Z. Wang et al., "Memristors with Diusive Dynamics as Synaptic Emulators for Neuromorphic Computing," Nature Mat., vol. 16, 2017, pp. 101-110. 

  15. L. Hu, "Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films," Adv. Mater., vol. 29, no. 24, 2017, pp. 1-11. 

  16. S. Choi et al., "Experimental Demonstration of Feature Extraction and Dimensionality Reduction Using Memristor Networks," Nano Lett., vol. 17, no. 5, 2017, pp. 3113-3118. 

  17. T. Chang et al., "Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor," ACS Nano, vol. 5, no. 9, 2011, pp. 7669-7676. 

  18. Z.H. Tan et al., "Synaptic Metaplasticity Realized in Oxide Memristive Devices," Adv. Mater., vol. 28, no. 2, Jan. 2016, pp. 377-384. 

  19. D. Kuzum et al., "Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing," Nano Lett., vol. 12, no. 5, 2012, pp. 2179-2186. 

  20. C.D. Wright et al., "Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials," Adv. Mater., vol. 23, no. 30, Aug. 2011, pp. 3408-3413. 

  21. X. Wang et al., "Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion," IEEE Electr. Dev. Lett., vol. 30, no. 3, Mar. 2009, pp. 294-297. 

  22. G. Srinivasan et al., "Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning," Sci. Rep., vol. 6, 2016, Article no. 29545. 

  23. S. Kim et al., "Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol, " ACS Nano, vol. 11, no. 3, 2017, pp. 2814-2822. 

  24. Y. Burgt et al., "A Non-Volatile Organic Electrochemical Device as a Low-Voltage Artificial Synapse for Neuromorphic Computing," Nature Mat., vol. 16, 2017, pp. 414-419. 

  25. C.S. Yang et al., "A Synaptic Transistor based on Quasi-2D Molybdenum Oxide," Adv. Mater., vol. 29, no. 27, July 2017, Article no. 1700906. 

  26. J. Shi et al., "A correlated nickelate synaptic transistor," Nature Commun., vol. 4, 2013, Article no. 2676. 

  27. Y.M. Kim et al., "Short-Term and Long-Term Memory Operations of Synapse Thin-Film Transistors using an In-Ga-Zn-O Active Channel and a Poly(4-vinylphenol)-Sodium ${\beta}$ -Alumina Electrolytic Gate Insulator," RSC Adv., vol. 6, 2017, pp. 52913-52919. 

  28. F. Shao at al., "Oxide-Based Synaptic Transistors Gated by Sol-Gel Silica Electrolytes," ACS Appl. Mater. Interfaces, vol. 8, 2016, pp. 3050-3055. 

  29. C. Wan et al., "Classical Conditioning Mimicked in Junctionless IZO Electric-Double-Layer Thin-Film Transistors," IEEE Electr. Dev. Lett., vol. 35, no. 3, Mar. 2014, pp. 414-416. 

  30. S.M. Yoon et al., "An Electrically Modifiable Synapse Array Composed of Metal-Ferroelectric-Semiconductor (MFS) FET's using SrBi2Ta2O9 Thin Films," IEEE Electron. Dev. Lett., vol. 20, no. 5, May 1999, pp. 229-231. 

  31. S.M. Yoon et al., "Adpative-Learning Neuron Integrated Circuits Using Metal-Ferroelectric (SrBi2Ta2O9)-Semiconductor (MFS) FET's," IEEE Electron. Dev. Lett., vol. 20, no. 5, May 1999, pp. 526-528. 

  32. S.M. Yoon et al., "Ferroelectric Neuron Integrated Circuits Using SrBi2Ta2O9-Gate FET's and CMOS Schmitt-Trigger Oscillators," IEEE Trans. Electron. Dev., vol. 47, no. 8, Aug. 2000, pp. 1630-1635. 

  33. A. Chanthbouala et al., "A Ferroelectric Memristor," Nature Mater., vol. 11, Sept. 2012, pp. 860-864. 

  34. S. Boyn et al., "Learning Through Ferroelectric Domain Dynamics in Solid-State Synapses," Nature Commun., vol. 8, Apr. 2017, Article no. 14736. 

  35. C. Yoon et al., "Synaptic Plasticity Selectively Activated by Polarization-Dependent Energy-Efficient Ion Migration in an Ultrathin Ferroelectric Tunnel Junction," Nano Lett., vol. 17, no. 3, 2017, pp. 1949-1955. 

  36. K. Likharev et al., "CrossNets: High-Performance Neuromorphic Architectures for CMOL Circuits," Annu. NY Acad. Sci., vol. 1006, no. 1, Dec. 2003, pp. 146-163. 

  37. K. Likharev, "CrossNets: Neur Omorphic Hybrid CMOS/Nanoelectronic Networks," Sci. Adv. Mater., vol. 3, no. 3, June 2011, pp. 322-331. 

  38. D.B. Strukov et al., "CMOL FPGA: a Reconfigurable Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices," Nanotechnol., vol. 16, no. 6, Apr. 2005, pp. 888. 

  39. P. Lin et al., "3D Integration of Planar Crossbar Memristive Devices with CMOS Substrate," Nanotechnol., vol. 25, no. 40, 2014, Article no. 405202. 

  40. M. Jo et al., "Novel Cross-Point Resistive Switching Memory with Self-Formed Schottky Barrier," Symp. VLSI Technol., Honolulu, HI, USA, June 15-17, 2010, pp. 53-54. 

  41. M. Lee et al., "Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity," Adv. Mater., vol. 29, no. 28, July 2017, Article no. 1700951. 

  42. S. Qin et al., "A Light-Stimulated Synaptic Device Based on Graphene Hybrid Phototransistor," 2D Mater., vol. 4, no. 3, Aug. 2017, Article no. 035022. 

  43. http://www.panasonic.co.jp/corp/news/official.data/data.dir/2013/06/en130610-3/en130610-3.html 

  44. Moon et al., "High Density Neuromorphic System with Mo/Pr0.7Ca0.3MnO3 Synapse and NbO2 IMT Oscillator Neuron," IEEE Int. Electr. Dev. Meeting, Washington, DC, USA, Dec. 7-9, 2015, pp. 17.6.1-17.6.4. 

  45. G.W. Burr et al., "Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element," IEEE Trans. Electr. Dev., vol. 62, no. 11, Nov. 2015, pp. 3498-3507. 

  46. http://caffe.berkeleyvision.org/ 

  47. https://www.tensorflow.org/ 

  48. http://deeplearning.net/software/theano/ 

  49. http://torch.ch/ 

  50. P. Gysel et al., "Hardware-Oriented Approximation of Convolutional Neural Networks," Int. Conf. Learn. Representations, San Juan, Puerto Rico, May 2-4, 2016, pp. 1-8. 

  51. S. Han et al., "Learning Both Weights and Connections for Efficient Neural Network." In Proc. Int. Conf. Neural Inform. Process. Syst., Montreal, Canada, Dec. 7-12, 2015, 2016, pp. 1135-1143. 

  52. S. Han et al., "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding," Proc. Int. Conf. Neural Inform. Process. Syst., Montreal, Canada, Dec. 7-12, 2015, pp. 1-9. 

  53. C. Du et al., "Reservoir Computing Using Dynamic Memristors for Temporal Information Processing," Nature Commun., vol. 8, 2017, Article no. 2204. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로