$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 이차원 나노 소재 기반 촉각 센서 기술 동향
Research Trends of Two-Dimensional Nanomaterial-Based Tactile Sensors 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.33 no.1, 2018년, pp.123 - 130  

민복기 (신소자연구그룹) ,  김성준 (신소자연구그룹) ,  이윤식 (신소자연구그룹) ,  최춘기 (신소자연구그룹)

Abstract AI-Helper 아이콘AI-Helper

Tactile sensors, which are commonly referred to as pressure and strain sensors, have been extensively investigated to meet the demands for attachable and wearable electronics for monitoring the health status or activity of human users. For this purpose, the introduction of two-dimensional (2D) mater...

참고문헌 (30)

  1. T. Yang et al., "Recent Advances in Wearable Tactile Sensors: Materials, Sensing Mechanisms, and Device Performance," Mater. Sci. Eng. R, vol. 115, May 2017, pp. 1-37. 

  2. H. Tian et al., "Scalable Fabrication of High Performance and Flexible Graphene Strain Sensors," Nanoscale, vol. 6, no. 2, Jan. 2014, pp. 699-705. 

  3. N. Lu et al., "Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers," Adv. Funct. Mater., vol. 22, no. 19, Oct. 2012, pp. 4044-4050. 

  4. S.C.B. Mannsfeld et al., "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layer," Nature Mater., vol. 9, 2010, pp. 859-864. 

  5. H. Vandeparre et al., "Extremely Robust and Conformable Capacitive Pressure Sensors Based on Flexible Polyurethane Foams and Stretchable Metallization," Appl. Phys. Lett., vol. 103, no. 20, Oct. 2013, pp. 204103:1-204103:3. 

  6. W. Wu, X. Wen, and Z.L. Wang, "Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and adaptive Tactile Imaging," Sci., vol. 340, no. 6135, May 2013, pp. 952-957. 

  7. P. Ueberschlag, "PVDF Piezoelectric Polymer," Sens. Rev., vol. 21, 2001, pp. 118-126. 

  8. K.S. Novoselov, "A Roadmap for Graphene," Nature, vol. 490, 2012, pp. 192-200. 

  9. V.M. Pereira et al., "Tight-Binding Approach to Uniaxial Strain in Graphene," Phys. Rev. B, vol. 80, July 2009, pp. 045401:1-045401:8. 

  10. M. Huang et al., "Electronic-Mechanical Coupling in Graphene from in Situ Nanoindentation Experiments and Multiscale Atomistic Simulations," Nano Lett., vol. 11, no. 3, Feb. 2011, pp. 1241-1246. 

  11. X.-W. Fu et al., "Strain Dependent Resistance in Chemical Vapor Deposition Grown Graphene," Appl. Phys. Lett., vol. 99, 2011, pp. 213107:1-213107:3. 

  12. X. Li et al., "Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application," Adv. Funct. Mater., vol. 26, no. 9, Nov. 2016, pp. 1322-1329. 

  13. J. Zhao et al., "Tunable Piezoresistivity of Nanographene Films for Strain Sensing," ACS Nano, vol. 9, no. 2, 2015, pp. 1622-1629. 

  14. Z. Dai et al., "Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio," Sci. Rep., vol. 6, Sept. 2016, pp. 32989:1-32989:9. 

  15. J. Yan et al., "Preparation of Multifunctional Microchannel-Network Graphene Foams," J. Mater. Chem. A, vol. 2, 2014, pp. 16786-16792. 

  16. H. Hu et al., "Ultralight and Highly Compressible Graphene Aerogels," Adv. Mater., vol. 25, no. 15, Apr. 2013, pp. 2219-2223. 

  17. C. Wu et al., "Mechanically Flexible and Multifunctional Polymer-Based Graphene Foams for Elastic Conductors and Oil-Water Separators," Adv. Mater., vol. 25, no. 39, Oct. 2013, pp. 5658-5662. 

  18. Z. Chen et al., "Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition," Nature Mater., vol. 10, 2011, pp. 424-428. 

  19. H. Huang et al., "A Three-Dimensional Elastic Macroscopic Graphene Network for Thermal Management Application," J. Mater. Chem. A, vol. 2, 2014, pp. 18215-18218. 

  20. B.H. Min et al., "Bulk Scale Growth of CVD Graphene on Ni Nanowire Foams for a Highly Dense and Elastic 3D Conducting Electrode," Carbon, vol. 80, Dec. 2014, pp. 446-452. 

  21. X. Dong et al., "3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing," ACS Appl. Mater. Interfaces, vol. 4, 2012, pp. 3129-3133. 

  22. J. Kuang et al., "A Hierarchically Structured Graphene Foam and Its Potential as a Large-Scale Strain-Gauge Sensor," Nanoscale, vol. 5, no. 24, Dec. 2013, pp. 12171-12177. 

  23. H.-B. Yao et al., "A Flexible and Highly Pressure-Sensitive Graphene-Polyurethane Sponge Based on Fractured Microstructure Design," Adv. Mater., vol. 25, no. 46, Dec. 2013, pp. 6692-6698. 

  24. R. Xu et al., "Facile Fabrication of Three-Dimensional Graphene Foam/Poly(Dimethylsiloxane) Composites and Their Potential Application as Strain Sensor," ACS Appl. Mater. Interfaces, vol. 6, no. 16, Aug. 2014, pp. 13455-13460. 

  25. Y.R. Jeong et al., "Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam," Adv. Funct. Mater., vol. 25, no. 27, July 2015, pp. 4228-4236. 

  26. Q.H. Wang et al., "Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides," Nature Nanotechnol., vol. 7, 2012, pp. 699-712. 

  27. W. Wu et al., "Piezoelectricity of Single-Atomic-Layer $MoS_2$ for Energy Conversion and Piezotronics," Nature, vol. 514, Oct. 2014, pp. 470-474. 

  28. J. Qi et al., "Piezoelectric Effect in Chemical Vapour Deposition-Grown Atomic-Monolayer Triangular Molybdenum Disulfide Piezotronics," Nature Commun., vol. 6, 2015, pp. 7430:1-7430:8. 

  29. H. Zhu et al., "Observation of Piezoelectricity in Free-Standing Monolayer $MoS_2$ ," Nature Nanotechnol., vol. 10, 2015, pp. 151-155. 

  30. M. Park et al., " $MoS_2$ -Based Tactile Sensor for Electronic Skin Applications," Adv. Mater., vol. 28, no. 13, Apr. 2016, pp. 2556-2562. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로