$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Control of Mechanical Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure 원문보기

Elastomers and composites = 엘라스토머 및 콤포지트, v.54 no.4, 2019년, pp.271 - 278  

Kojio, Ken (Graduate School of Engineering, Kyushu University) ,  Nozaki, Shuhei (Graduate School of Engineering, Kyushu University) ,  Takahara, Atsushi (Graduate School of Engineering, Kyushu University) ,  Yamasaki, Satoshi (Mitsui Chemicals, Inc.)

Abstract AI-Helper 아이콘AI-Helper

Polyurethane elastomers (PUEs) were synthesized using trans-1,4-bis(isocyanatomethyl) cyclohexane (1,4-H6XDI), poly(oxytetramethylene) glycol, 1,4-butanediol (BD), and 1,1,1-trimethylol propane (TMP). To control the molecular aggregation state and mechanical properties of these PUEs, hard segment co...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • ATR-FT-IR measurements were carried out in order to evaluate hydrogen bonding state of the urethane carbonyl groups of hard segment chains and ether oxygen of soft segment chains in the PUEs. Figure 2 shows ATR-FT-IR spectra of (a) 3600~3200 cm-1 and (b) 1800~1600 cm-1 region for the four 1,4-H6XDI-based PUEs prepared with various hard segment ratio and BD/TMP ratio.
  • DSC measurement was performed to investigate glass transition temperature and melting point of the PUEs. The DSC curves were obtained using a DSC (Rigaku DSC 8230, Rigaku Denki Co.
  • Four 1,4-H6XDI-based PUEs with two different hard segment contents (20 and 30 wt%) and BD/TMP ratios (10/0 and 8/2) (HX-30-10/0, HX-30-8/2, HX-20-10/0, and HX-20-8/2) were synthesized with PTMG as a soft segment. The hard segment chains in the 1,4-H6XDI-based PUEs crystallized easily forming strong intermolecular hydrogen bonds due to the symmetry of 1,4-H6XDI molecule.
  • Imposed strain and frequency were 0.2% and 10 Hz, respectively Uniaxial tensile tests were carried out using an Instron type tensile tester (RTE-1210, Orientec, Co., LTD.) at 20°C.
  • In this study, four types of 1,4-H6XDI-based PUEs were synthesized with various hard segment content and BD/TMP ratio. The relationship between structure and properties of the 1,4-H6XDI-based PUEs were studied by swelling test, infrared spectroscopy (IR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction and small-angle X-ray scattering (WAXD and SAXS), dynamic viscoelastic property mea- surement and tensile testing.
  • Figure 1 shows the synthetic scheme of a prepolymer method. The 1,4- H6XDI-based PUEs with two hard segment contents, 20 and 30 wt%, and two TMP contents, 0 and 20 wt%, were synthesized. The nomenclature denotes the type of diisocyanate, hard segment content, and BD/TMP ratio, for example, HX30-8/2 denotes 1,4-H6XDI-based PUE with hard segment content of 30 wt%, and BD/TMP = 8/2
  • The state of hydrogen bond of the hard and soft segments in the 1,4-H6XDI-based PUEs was evaluated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Spectra were obtained with an FTS-3000 EXCALIBUR (Bruker Japan Co.
  • Peak positions of HX-30 PUEs were lower than for HX20. To discuss in detail, interdomain spacings were determined by analyzing the threedimensional correlation function. Moreover, diffuse phase boundary thickness of hard and soft segments was determined by analyzing the deviation from Porod’s law.
  • To investigate the crystal structure of the hard segment chains in the PUEs, WAXD measurements were carried out. Figure 4 shows WAXD profiles for the 1,4-H6XDI-based PUEs prepared with various hard segment contents and BD/ TMP ratios.
  • Uniaxial tensile tests were carried out using an Instron type tensile tester (RTE-1210, Orientec, Co., LTD.) at 20°C.

대상 데이터

  • 2 m. For WAXD measurements, a flat panel detector was employed, and the camera length was 63 mm. Scattering patterns were collected for 200~500 ms.
  • Small-angle X-ray scattering (SAXS) and wide-angle Xray diffraction (WAXD) measurements were conducted for the PUEs at the BL03XU8,9 and BL05XU beamline in the SPring-8 facility in Japan. The photon flux was ~1013 photons/s, and the size of beam at the sample was 150 mm × 150 mm.
  • The PUEs prepared in this study were synthesized in bulk with PTMG, 1,4-H6XDI and BD and TMP. Figure 1 shows the synthetic scheme of a prepolymer method.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Z. S. Petrovic and J. Ferguson, "Polyurethane elastomers", Prog. Polym. Sci., 16, 695 (1991). 

  2. Z. S. Petrovic and J. Budinski-Simendic, "Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. The effect on physical and morphological properties", Rubber Chem. Technol., 58, 685 (1985). 

  3. Z. S. Petrovic and J. Budinski-Simendic, "Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. The effect on physical and morphological properties", Rubber Chem. Technol., 58, 701 (1985). 

  4. K. Kojio, T. Fukumaru, and M. Furukawa, "Highly softened polyurethane elastomer synthesized with novel 1,2-bis(isocyanate) ethoxyethane", Macromolecules, 37, 3287 (2004). 

  5. K. Kojio, S. Nakashima, and M. Furukawa, "Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes", Polymer, 48, 997 (2007). 

  6. Y. Higaki, K. Suzuki, Y. Oniki, K. White, N. Ohta, and A. Takahara, "Molecular aggregation structure evolution during stretching of environmentally benign lysine-based segmented poly(urethane-urea)s", Polymer, 78, 173 (2015). 

  7. S. Nozaki, S. Masuda, K. Kamitani, K. Kojio, A. Takahara, G. Kuwamura, D. Hasegawa, K. Moorthi, K. Mita, and S. Yamasaki, "Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure", Macromolecules, 50, 1008 (2017). 

  8. R. Rahmawati, S. Nozaki, K. Kojio, A. Takahara, N. Shinohara, and S. Yamasaki, "Microphase-separated structure and mechanical properties of cycloaliphatic diisocyanate-based thiourethane elastomers", Polym. J., 51, 265 (2019). 

  9. K. Kojio, R. Rahmawati, N. Shinohara, and S. Yamasaki, "Molecular Aggregation Structure and Mechanical Properties of Low-Hard Segment Content Polyurethane and Polythio-urethane Elastomers Based on Cycloaliphatic Diisocyanate with a Symmetric Structure", J. Adhes. Soc. Jpn., 55, 181 (2019). 

  10. D. Orthaber, A. Bergmann, and O. Glatter, "SAXS experiments on absolute scale with Kratky systems using water as a secondary standard", J. Appl. Crystallogr., 33, 218 (2000). 

  11. M. Furukawa, Y. Hamada, and K. Kojio, "Aggregation structure and mechanical properties of functionally graded polyurethane elastomers", J. Polym. Sci., Part B: Polym. Phys., 41, 2355 (2003). 

  12. K. Kojio, S. Nakamura, and M. Furukawa, "Effect of side methyl groups of polymer glycol on elongation-induced crystallization behavior of polyurethane elastomers", Polymer, 45, 8147 (2004). 

  13. K. Kojio, Y. Nonaka, T. Masubuchi, and M. Furukawa, "Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers", J. Polym. Sci., Part B: Polym. Phys., 42, 4448 (2004). 

  14. K. Kojio, M. Furukawa, S. Motokucho, M. Shimada, and M. Sakai, "Structure-Mechanical Property Relationships for Poly(carbonate urethane) Elastomers with Novel Soft Segments", Macromolecules, 42, 8322 (2009). 

  15. C. M. Brunette, S. L. Hsu, and W. J. Macknight, "Hydrogenbonding properties of hard-segment model compounds in polyurethane block copolymers", Macromolecules, 15, 71 (1982). 

  16. H. S. Lee, Y. K. Wang, and S. L. Hsu, "Spectroscopic analysis of phase-separation behavior of model polyurethanes", Macromolecules, 20, 2089 (1987). 

  17. R. Bonart and E. H. Muller, "Phase separation in urethane elastomers as judged by low-angle x-ray-scattering. 2. Experimental results", J. Macromol. Sci. Phys., B 10, 345 (1974). 

  18. J. T. Koberstein and R. S. Stein, "Small-angle x-ray-scattering studies of microdomain structure in segmented polyurethane elastomers", J. Polym. Sci., Part B: Polym. Phys., 21, 1439 (1983). 

  19. G. Kuwamura, T. Nakagawa, D. Hasegawa, and S. Yamasaki, "Bis(isocyanatomethyl)cyclohexane for making polyurethane resin useful for various applications", WO2009051114A1 (2009). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로